An extension of one direction in Marty’s normality criterion

被引:0
|
作者
Jürgen Grahl
Shahar Nevo
机构
[1] University of Würzburg,Department of Mathematics
[2] Bar-Ilan University,Department of Mathematics
来源
关键词
Marty’s theorem; Normal families; Nevanlinna theory; 30A10; 30D35; 30D45;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the following extension of one direction in Marty’s theorem: If k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is a natural number, α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document} and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F }$$\end{document} is a family of functions meromorphic on a domain D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} all of whose poles have multiplicity at least kα-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{k}{\alpha -1}$$\end{document}, then the normality of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F }$$\end{document} implies that the family |f(k)|1+|f|α:f∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \frac{|f^{(k)}|}{1+|f|^\alpha }\,:\, f\in \mathcal{F }\right\} \end{aligned}$$\end{document}is locally uniformly bounded.
引用
收藏
页码:205 / 217
页数:12
相关论文
共 50 条
  • [1] An extension of one direction in Marty's normality criterion
    Grahl, Juergen
    Nevo, Shahar
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (02): : 205 - 217
  • [2] On Marty’s Criterion
    陈怀惠
    PeterLappan
    数学进展, 1994, (04) : 374 - 375
  • [3] DIFFERENTIAL INEQUALITIES AND A MARTY-TYPE CRITERION FOR QUASI-NORMALITY
    Grahl, Juergen
    Manket, Tomer
    Nevo, Shahar
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 105 (01) : 34 - 45
  • [4] AN EXTENSION OF A NORMALITY CRITERION LEADING TO A COUNTEREXAMPLE TO THE CONVERSE OF BLOCH'S PRINCIPLE
    Bharti, Nikhil
    Charak, Kuldeep singh
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2025, 40 (01): : 97 - 110
  • [5] Improvement of marty's criterion and its application
    Huai-Hui, Chen
    Yong-Xing, Gu
    Science in China Series A: Mathematics, Physics, Astronomy and Technological Sciences, 1993, 36 (06):
  • [6] Improvement of Marty's Criterion and Its Application
    陈怀惠
    顾永兴
    Science China Mathematics, 1993, (06) : 674 - 681
  • [7] A generalization of Gu's normality criterion
    Liu, Xiaoyi
    Chang, Jianming
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2012, 88 (05) : 67 - 69
  • [8] Lappan's normality criterion in Cn
    Charak, Kuldeep Singh
    Kumar, Rahul
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 239 - 252
  • [9] Marty Direction of an Algebroid Function
    Wu, Nan
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2009, 8 : 866 - 868
  • [10] One's expectations for normality
    Eapen, Mary
    BLOOD, 2024, 144 (14) : 1469 - 1470