Genome-wide prediction and prioritization of human aging genes by data fusion: a machine learning approach

被引:0
|
作者
Masoud Arabfard
Mina Ohadi
Vahid Rezaei Tabar
Ahmad Delbari
Kaveh Kavousi
机构
[1] Kish International Campus University of Tehran,Department of Bioinformatics
[2] University of Tehran,Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB)
[3] University of Social Welfare and Rehabilitation Sciences,Iranian Research Center on Aging
[4] Allameh Tabataba’i University,Department of Statistics, Faculty of Mathematical Sciences and Computer
来源
BMC Genomics | / 20卷
关键词
Genome-wide; Prioritization; Human aging genes; Positive unlabeled learning; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Prediction of Breast Cancer Treatment-Induced Fatigue by Machine Learning Using Genome-Wide Association Data
    Lee, Sangkyu
    Deasy, Joseph O.
    Oh, Jung Hun
    Di Meglio, Antonio
    Dumas, Agnes
    Menvielle, Gwenn
    Charles, Cecile
    Boyault, Sandrine
    Rousseau, Marina
    Besse, Celine
    Thomas, Emilie
    Boland, Anne
    Cottu, Paul
    Tredan, Olivier
    Levy, Christelle
    Martin, Anne-Laure
    Everhard, Sibille
    Ganz, Patricia A.
    Partridge, Ann H.
    Michiels, Stefan
    Deleuze, Jean-Francois
    Andre, Fabrice
    Vaz-Luis, Ines
    JNCI CANCER SPECTRUM, 2020, 4 (05)
  • [22] Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach
    Andorf, Carson
    Dobbs, Drena
    Honavar, Vasant
    BMC BIOINFORMATICS, 2007, 8 (1)
  • [23] Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach
    Carson Andorf
    Drena Dobbs
    Vasant Honavar
    BMC Bioinformatics, 8
  • [24] Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits
    Gonzalez-Recio, Oscar
    Rosa, Guilherme J. M.
    Gianola, Daniel
    LIVESTOCK SCIENCE, 2014, 166 : 217 - 231
  • [25] Genome-Wide Mutation Scoring for Machine-Learning-Based Antimicrobial Resistance Prediction
    Majek, Peter
    Lueftinger, Lukas
    Beisken, Stephan
    Rattei, Thomas
    Materna, Arne
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (23)
  • [26] A genome-wide approach reveals novel imprinted genes expressed in the human placenta
    Barbaux, Sandrine
    Gascoin-Lachambre, Geraldine
    Buffat, Christophe
    Monnier, Paul
    Mondon, Francoise
    Tonanny, Marie-Beatrice
    Pinard, Amelie
    Auer, Jana
    Bessieres, Bettina
    Barlier, Anne
    Jacques, Sebastien
    Simeoni, Umberto
    Dandolo, Luisa
    Letourneur, Franck
    Jammes, Helene
    Vaiman, Daniel
    EPIGENETICS, 2012, 7 (09) : 1079 - 1090
  • [27] Genome-wide prediction of cancer driver genes based on SNP and cancer SNV data
    He, Quanze
    He, Quanyuan
    Liu, Xiaohui
    Wei, Youheng
    Shen, Suqin
    Hu, Xiaohui
    Li, Qiao
    Peng, Xiangwen
    Wang, Lin
    Yu, Long
    AMERICAN JOURNAL OF CANCER RESEARCH, 2014, 4 (04): : 394 - U117
  • [28] Explainable Machine Learning Model for Alzheimer Detection Using Genetic Data: A Genome-Wide Association Study Approach
    Khater, Tarek
    Ansari, Sam
    Saad Alatrany, Abbas
    Alaskar, Haya
    Mahmoud, Soliman
    Turky, Ayad
    Tawfik, Hissam
    Almajali, Eqab
    Hussain, Abir
    IEEE ACCESS, 2024, 12 : 95091 - 95105
  • [29] Predicting genome-wide redundancy using machine learning
    Chen, Huang-Wen
    Bandyopadhyay, Sunayan
    Shasha, Dennis E.
    Birnbaum, Kenneth D.
    BMC EVOLUTIONARY BIOLOGY, 2010, 10
  • [30] Machine learning approaches to genome-wide association studies
    Enoma, David O.
    Bishung, Janet
    Abiodun, Theresa
    Ogunlana, Olubanke
    Osamor, Victor Chukwudi
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (04)