Genome-wide prediction and prioritization of human aging genes by data fusion: a machine learning approach

被引:0
|
作者
Masoud Arabfard
Mina Ohadi
Vahid Rezaei Tabar
Ahmad Delbari
Kaveh Kavousi
机构
[1] Kish International Campus University of Tehran,Department of Bioinformatics
[2] University of Tehran,Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB)
[3] University of Social Welfare and Rehabilitation Sciences,Iranian Research Center on Aging
[4] Allameh Tabataba’i University,Department of Statistics, Faculty of Mathematical Sciences and Computer
来源
BMC Genomics | / 20卷
关键词
Genome-wide; Prioritization; Human aging genes; Positive unlabeled learning; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Genome-wide prediction and prioritization of human aging genes by data fusion: a machine learning approach
    Arabfard, Masoud
    Ohadi, Mina
    Tabar, Vahid Rezaei
    Delbari, Ahmad
    Kavousi, Kaveh
    BMC GENOMICS, 2019, 20 (01)
  • [2] A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data
    Pedro R Costa
    Marcio L Acencio
    Ney Lemke
    BMC Genomics, 11
  • [3] A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data
    Costa, Pedro R.
    Acencio, Marcio L.
    Lemke, Ney
    BMC GENOMICS, 2010, 11
  • [4] Combining optimization and machine learning techniques for genome-wide prediction of human cell cycle-regulated genes
    De Santis, Marianna
    Rinaldi, Francesco
    Falcone, Emmanuela
    Lucidi, Stefano
    Piaggio, Giulia
    Gurtner, Aymone
    Farina, Lorenzo
    BIOINFORMATICS, 2014, 30 (02) : 228 - 233
  • [5] A Bayesian data fusion based approach for learning genome-wide transcriptional regulatory networks
    Elisabetta Sauta
    Andrea Demartini
    Francesca Vitali
    Alberto Riva
    Riccardo Bellazzi
    BMC Bioinformatics, 21
  • [6] A Bayesian data fusion based approach for learning genome-wide transcriptional regulatory networks
    Sauta, Elisabetta
    Demartini, Andrea
    Vitali, Francesca
    Riva, Alberto
    Bellazzi, Riccardo
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [7] A classification-based machine learning approach for the analysis of genome-wide expression data
    Lyons-Weiler, J
    Patel, S
    Bhattacharya, S
    GENOME RESEARCH, 2003, 13 (03) : 503 - 512
  • [8] A genome-wide approach to skin aging
    Le Clerc, S.
    Tiang, L.
    Ezzedine, K.
    Bernard, A.
    Latreille, J.
    Malvy, D.
    Jdid, R.
    Galan, P.
    Hercberg, S.
    Morizot, F.
    Guinot, C.
    Tschachler, E.
    Zagury, J.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2013, 133 : S144 - S144
  • [9] A Novel Machine Learning Framework For Phenotype Prediction Based On Genome-Wide DNA Methylation Data
    Karagod, Vinay Vittal
    Sinha, Kaushik
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1657 - 1664
  • [10] Machine Learning to Advance Human Genome-Wide Association Studies
    Sigala, Rafaella E.
    Lagou, Vasiliki
    Shmeliov, Aleksey
    Atito, Sara
    Kouchaki, Samaneh
    Awais, Muhammad
    Prokopenko, Inga
    Mahdi, Adam
    Demirkan, Ayse
    GENES, 2024, 15 (01)