Integer Multiflows in Acyclic Planar Digraphs

被引:0
|
作者
Guyslain Naves
机构
[1] Aix-Marseille University,Laboratoire d’Informatique Fondamentale de Marseille, CNRS UMR 7279
来源
Combinatorica | 2023年 / 43卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We give an algorithm with complexity O((R+1)4k2k3n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((R+1)^{4k^2} k^3 n)$$\end{document} for the integer multiflow problem on instances (G, H, r, c) with G an acyclic planar digraph and r+c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+c$$\end{document} Eulerian. Here, n=|V(G)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = |V(G)|$$\end{document}, k=|E(H)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = |E(H)|$$\end{document} and R is the maximum request maxh∈E(H)r(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{h \in E(H)} r(h)$$\end{document}. When k is fixed, this gives a polynomial-time algorithm for the arc-disjoint paths problem under the same hypothesis.Kindly check and confirm the edit made in the title.Confirmed Journal instruction requires a city and country for affiliations; however, these are missing in affiliation [1]. Please verify if the provided city is correct and amend if necessary.Since the submission, my affiliation has changed. It should now be: Laboratoire d'Informatique & Systèmes, Aix-Marseille Université, CNRS UMR 7020, Marseille, France
引用
收藏
页码:1031 / 1043
页数:12
相关论文
共 50 条
  • [1] Integer Multiflows in Acyclic Planar Digraphs
    Naves, Guyslain
    COMBINATORICA, 2023, 43 (05) : 1031 - 1043
  • [2] Acyclic Subgraphs of Planar Digraphs
    Golowich, Noah
    Rolnick, David
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [3] Multiflows in symmetric digraphs
    Jarry, Aubin
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) : 2208 - 2220
  • [4] Planar Digraphs without Large Acyclic Sets
    Knauer, Kolja
    Valicov, Petru
    Wenger, Paul S.
    JOURNAL OF GRAPH THEORY, 2017, 85 (01) : 288 - 291
  • [5] Upward planar drawing of single-source acyclic digraphs
    Hutton, MD
    Lubiw, A
    SIAM JOURNAL ON COMPUTING, 1996, 25 (02) : 291 - 311
  • [6] Potentials in undirected graphs and planar multiflows
    Sebo, A
    SIAM JOURNAL ON COMPUTING, 1997, 26 (02) : 582 - 603
  • [7] Subpath acyclic digraphs
    McMorris, FR
    Mulder, HM
    DISCRETE MATHEMATICS, 1996, 154 (1-3) : 189 - 201
  • [8] Kernels for acyclic digraphs
    Elzinga, Cees H.
    Wang, Hui
    PATTERN RECOGNITION LETTERS, 2012, 33 (16) : 2239 - 2244
  • [9] Subpath acyclic digraphs
    Discrete Math, 1-3 (189):
  • [10] INTERVAL ACYCLIC DIGRAPHS
    HARARY, F
    KABELL, JA
    MCMORRIS, FR
    ARS COMBINATORIA, 1990, 29A : 59 - 64