Planar Digraphs without Large Acyclic Sets

被引:3
|
作者
Knauer, Kolja [1 ]
Valicov, Petru [1 ]
Wenger, Paul S. [2 ]
机构
[1] Aix Marseille Univ, CNRS, LIF, UMR 7279, F-13288 Marseille, France
[2] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
关键词
planar digraphs; acyclic set; feedback vertex set;
D O I
10.1002/jgt.22061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a directed graph, an acyclic set is a set of vertices inducing a directed subgraph with no directed cycle. In this note, we show that for all integers ng3, there exist oriented planar graphs of order n and digirth g for which the size of the maximum acyclic set is at most remvoe<n(g-2)+1g-1. When g=3 this result disproves a conjecture of Harutyunyan and shows that a question of Albertson is best possible. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:288 / 291
页数:4
相关论文
共 50 条
  • [1] Convex Sets in Acyclic Digraphs
    Balister, Paul
    Gerke, Stefanie
    Gutin, Gregory
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2009, 26 (01): : 95 - 100
  • [2] Convex Sets in Acyclic Digraphs
    Paul Balister
    Stefanie Gerke
    Gregory Gutin
    Order, 2009, 26 : 95 - 100
  • [3] Acyclic Subgraphs of Planar Digraphs
    Golowich, Noah
    Rolnick, David
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [4] Integer Multiflows in Acyclic Planar Digraphs
    Naves, Guyslain
    COMBINATORICA, 2023, 43 (05) : 1031 - 1043
  • [5] Integer Multiflows in Acyclic Planar Digraphs
    Guyslain Naves
    Combinatorica, 2023, 43 : 1031 - 1043
  • [6] Algorithms for generating convex sets in acyclic digraphs
    Balister, P.
    Gerke, S.
    Gutin, G.
    Johnstone, A.
    Reddington, J.
    Scott, E.
    Soleimanfallah, A.
    Yeo, A.
    JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (04) : 509 - 518
  • [7] Uniform random generation of large acyclic digraphs
    Jack Kuipers
    Giusi Moffa
    Statistics and Computing, 2015, 25 : 227 - 242
  • [8] Uniform random generation of large acyclic digraphs
    Kuipers, Jack
    Moffa, Giusi
    STATISTICS AND COMPUTING, 2015, 25 (02) : 227 - 242
  • [9] Upward planar drawing of single-source acyclic digraphs
    Hutton, MD
    Lubiw, A
    SIAM JOURNAL ON COMPUTING, 1996, 25 (02) : 291 - 311
  • [10] Subpath acyclic digraphs
    McMorris, FR
    Mulder, HM
    DISCRETE MATHEMATICS, 1996, 154 (1-3) : 189 - 201