Planar Digraphs without Large Acyclic Sets

被引:3
|
作者
Knauer, Kolja [1 ]
Valicov, Petru [1 ]
Wenger, Paul S. [2 ]
机构
[1] Aix Marseille Univ, CNRS, LIF, UMR 7279, F-13288 Marseille, France
[2] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
关键词
planar digraphs; acyclic set; feedback vertex set;
D O I
10.1002/jgt.22061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a directed graph, an acyclic set is a set of vertices inducing a directed subgraph with no directed cycle. In this note, we show that for all integers ng3, there exist oriented planar graphs of order n and digirth g for which the size of the maximum acyclic set is at most remvoe<n(g-2)+1g-1. When g=3 this result disproves a conjecture of Harutyunyan and shows that a question of Albertson is best possible. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:288 / 291
页数:4
相关论文
共 50 条
  • [31] Acyclic chromatic indices of planar graphs with large girth
    Wang, Weifan
    Shu, Qiaojun
    Wang, Kan
    Wang, Ping
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) : 1239 - 1253
  • [32] Acyclic edge coloring of planar graphs with large girth
    Yu, Dongxiao
    Hou, Jianfeng
    Liu, Guizhen
    Liu, Bin
    Xu, Lan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) : 5196 - 5200
  • [33] Acyclic total colorings of planar graphs without l cycles
    Sun, Xiang Yong
    Wu, Jian Liang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (07) : 1315 - 1322
  • [34] Acyclic total colorings of planar graphs without l cycles
    Xiang Yong Sun
    Jian Liang Wu
    Acta Mathematica Sinica, English Series, 2011, 27 : 1315 - 1322
  • [35] A local hierarchy theory for acyclic digraphs
    Egghe, L
    Rousseau, R
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (01) : 107 - 117
  • [36] Acyclic Edge Coloring of Planar Graphs Without Small Cycles
    Jianfeng Hou
    Guizhen Liu
    Jianliang Wu
    Graphs and Combinatorics, 2012, 28 : 215 - 226
  • [37] On acyclic edge coloring of planar graphs without intersecting triangles
    Sheng, Ping
    Wang, Yingqian
    DISCRETE MATHEMATICS, 2011, 311 (21) : 2490 - 2495
  • [38] Acyclic Edge Coloring of Planar Graphs without Adjacent Triangles
    Dezheng XIE Yanqing WU College of Mathematics and StatisticsChongqing UniversityChongqing PRChinaSchool of Mathematics and Computer ScienceShanxi Normal UniversityShanxi PRChina
    数学研究及应用, 2012, 32 (04) : 407 - 414
  • [39] Acyclic edge coloring of planar graphs without adjacent cycles
    Min Wan
    BaoGang Xu
    Science China Mathematics, 2014, 57 : 433 - 442
  • [40] PATH PARTITIONS AND PACKS OF ACYCLIC DIGRAPHS
    AHARONI, R
    HARTMAN, IBA
    HOFFMAN, AJ
    PACIFIC JOURNAL OF MATHEMATICS, 1985, 118 (02) : 249 - 259