Integer Multiflows in Acyclic Planar Digraphs

被引:0
|
作者
Guyslain Naves
机构
[1] Aix-Marseille University,Laboratoire d’Informatique Fondamentale de Marseille, CNRS UMR 7279
来源
Combinatorica | 2023年 / 43卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We give an algorithm with complexity O((R+1)4k2k3n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((R+1)^{4k^2} k^3 n)$$\end{document} for the integer multiflow problem on instances (G, H, r, c) with G an acyclic planar digraph and r+c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+c$$\end{document} Eulerian. Here, n=|V(G)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = |V(G)|$$\end{document}, k=|E(H)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = |E(H)|$$\end{document} and R is the maximum request maxh∈E(H)r(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{h \in E(H)} r(h)$$\end{document}. When k is fixed, this gives a polynomial-time algorithm for the arc-disjoint paths problem under the same hypothesis.Kindly check and confirm the edit made in the title.Confirmed Journal instruction requires a city and country for affiliations; however, these are missing in affiliation [1]. Please verify if the provided city is correct and amend if necessary.Since the submission, my affiliation has changed. It should now be: Laboratoire d'Informatique & Systèmes, Aix-Marseille Université, CNRS UMR 7020, Marseille, France
引用
收藏
页码:1031 / 1043
页数:12
相关论文
共 50 条
  • [21] Integer multiflows and metric packings beyond the cut condition
    Marcus, K
    Sebö, A
    DISCRETE MATHEMATICS, 2001, 239 (1-3) : 13 - 31
  • [22] Crossing-Free Acyclic Hamiltonian Path Completion for Planar st-Digraphs
    Mchedlidze, Tamara
    Symvonis, Antonios
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 882 - 891
  • [23] Adjacency Matrices of Acyclic Digraphs
    Miller, Victor S.
    AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (04): : 345 - 345
  • [24] DISJOINT PATHS IN ACYCLIC DIGRAPHS
    METZLAR, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 57 (02) : 228 - 238
  • [25] Convex Sets in Acyclic Digraphs
    Balister, Paul
    Gerke, Stefanie
    Gutin, Gregory
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2009, 26 (01): : 95 - 100
  • [26] Acyclic coloring of products of digraphs☆
    Costa, Isnard Lopes
    Silva, Ana Shirley
    DISCRETE APPLIED MATHEMATICS, 2024, 349 : 59 - 69
  • [27] ON THE NUMBER OF LABELED ACYCLIC DIGRAPHS
    RODIONOV, VI
    DISCRETE MATHEMATICS, 1992, 105 (1-3) : 319 - 321
  • [28] Convex Sets in Acyclic Digraphs
    Paul Balister
    Stefanie Gerke
    Gregory Gutin
    Order, 2009, 26 : 95 - 100
  • [29] Independent branchings in acyclic digraphs
    Huck, A
    DISCRETE MATHEMATICS, 1999, 199 (1-3) : 245 - 249
  • [30] Counting extensional acyclic digraphs
    Policriti, Alberto
    Tomescu, Alexandru I.
    INFORMATION PROCESSING LETTERS, 2011, 111 (16) : 787 - 791