A Discussion of “Using Angler Characteristics and Attitudinal Data to Identify Environmental Preference Classes: A Latent-Class Model”

被引:0
|
作者
Bill Provencher
Rebecca Moore
机构
[1] University of Wisconsin,Department of Ag. & Applied Economics
来源
关键词
attitudinal data; heterogeneous preferences; latent class; mixed logit; random parameters; random utility model;
D O I
暂无
中图分类号
学科分类号
摘要
In the current issue of Environmental and Resource Economics, Morey et al. (2006) discuss a new approach to using attitudinal data in latent class modeling. We compare this approach with the one taken in Boxall and Adamowicz (2002), in the context of a discrete choice, random utility framework with heterogeneous preferences. We derive the respective likelihood functions of the two approaches to show that they are structurally similar, and discuss their implications for the use of attitudinal data. We conclude with a discussion comparing the relative merits of latent class and random parameters (mixed logit) modeling, offering the view that as a practical matter, choosing between them depends on the analyst’s judgment about the correlation of preference parameters.
引用
收藏
页码:117 / 124
页数:7
相关论文
共 47 条
  • [21] Latent class analysis in a transdiagnostic psychiatric population to identify classes of psychosocial functioning: Using data from routine clinical practice
    Hoogerheide, B.
    Visser, E.
    Maas, E. T.
    Booij, S. H.
    Riese, H.
    JOURNAL OF AFFECTIVE DISORDERS, 2025, 379 : 710 - 720
  • [22] Using Latent Class Analysis to Model Preference Heterogeneity in Health: A Systematic Review
    Mo Zhou
    Winter Maxwell Thayer
    John F. P. Bridges
    PharmacoEconomics, 2018, 36 : 175 - 187
  • [23] USING LATENT CLASS ANALYSIS TO MODEL PREFERENCE HETEROGENEITY IN HEALTH: A SYSTEMATIC REVIEW
    Zhou, M.
    Thayer, W. M.
    Bridges, J. F.
    VALUE IN HEALTH, 2017, 20 (05) : A339 - A339
  • [24] Using Latent Class Analysis to Model Preference Heterogeneity in Health: A Systematic Review
    Zhou, Mo
    Thayer, Winter Maxwell
    Bridges, John F. P.
    PHARMACOECONOMICS, 2018, 36 (02) : 175 - 187
  • [25] Accounting for unmeasured population substructure in case-control studies of genetic association using a novel latent-class model
    Satten, GA
    Flanders, WD
    Yang, QH
    AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 68 (02) : 466 - 477
  • [26] Incorporating Criterion Ratings Into Model-Based Rater Monitoring Procedures Using Latent-Class Signal Detection Theory
    Patterson, Brian F.
    Wind, Stefanie A.
    Engelhard, George, Jr.
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2017, 41 (06) : 472 - 491
  • [27] Quantifying preference heterogeneity in transit service desired quality using a latent class choice model
    Eldeeb, Gamal
    Mohamed, Moataz
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2020, 139 : 119 - 133
  • [28] Combined Approach to Multi-Informant Data Using Latent Factors and Latent Classes: Trifactor Mixture Model
    Kim, Eunsook
    von der Embse, Nathaniel
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2021, 81 (04) : 728 - 755
  • [29] Identification of developmental trajectory classes: Comparing three latent class methods using simulated and real data
    Sijbrandij, Jitske J.
    Hoekstra, Tialda
    Almansa, Josue
    Reijneveld, Sijmen A.
    Bultmann, Ute
    ADVANCES IN LIFE COURSE RESEARCH, 2019, 42
  • [30] What factors influence HIV testing? Modeling preference heterogeneity using latent classes and class-independent random effects
    Ostermann, Jan
    Flaherty, Brian P.
    Brown, Derek S.
    Njau, Bernard
    Hobbie, Amy M.
    Mtuy, Tara B.
    Masnick, Max
    Muhlbacher, Axel C.
    Thielman, Nathan M.
    JOURNAL OF CHOICE MODELLING, 2021, 40