Density enhancement mechanism of upwind schemes for low Mach number flows

被引:0
|
作者
Bo-Xi Lin
Chao Yan
Shu-Sheng Chen
机构
[1] Beihang University,School of Aeronautic Science and Engineering
来源
Acta Mechanica Sinica | 2018年 / 34卷
关键词
Energy equation; Density fluctuation; Roe; TV-MAS; Low speeds; All speeds; Computational fluid dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
Many all-speed Roe schemes have been proposed to improve performance in terms of low speeds. Among them, the F-Roe and T-D-Roe schemes have been found to get incorrect density fluctuation in low Mach flows, which is expected to be with the square of Mach number. Asymptotic analysis presents the mechanism of how the density fluctuation problem relates to the incorrect order of terms in the energy equation ρ~a~U~ΔU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tilde{\rho }} {\tilde{a}} {\tilde{U}}\varDelta U}$$\end{document}. It is known that changing the upwind scheme coefficients of the pressure-difference dissipation term DP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^P$$\end{document} and the velocity-difference dissipation term in the momentum equation DρU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\rho U}$$\end{document} to the order of O(c-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(c^{-1})$$\end{document} and O(c0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(c^{0})$$\end{document} can improve the level of pressure and velocity accuracy at low speeds. This paper shows that corresponding changes in energy equation can also improve the density accuracy in low speeds. We apply this modification to a recently proposed scheme, TV-MAS, to get a new scheme, TV-MAS2. Unsteady Gresho vortex flow, double shear-layer flow, low Mach number flows over the inviscid cylinder, and NACA0012 airfoil show that energy equation modification in these schemes can obtain the expected square Ma scaling of density fluctuations, which is in good agreement with corresponding asymptotic analysis. Therefore, this density correction is expected to be widely implemented into all-speed compressible flow solvers.
引用
收藏
页码:431 / 445
页数:14
相关论文
共 50 条
  • [41] Density-based solver for all Mach number flows
    Heinrich, Martin
    Schwarze, Ruediger
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2016, 16 (05): : 271 - 280
  • [42] Solutions for variable density low Mach number flows with a compressible pressure-based algorithm
    Huang Jing
    Li Ru
    He Yaling
    Qu Zhiguo
    APPLIED THERMAL ENGINEERING, 2007, 27 (11-12) : 2104 - 2112
  • [43] An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit
    Bresch, D
    Gisclon, M
    Lin, CK
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03): : 477 - 486
  • [44] Semiconservative reduced speed of sound technique for low Mach number flows with large density variations
    Iijima, H.
    Hotta, H.
    Imada, S.
    ASTRONOMY & ASTROPHYSICS, 2019, 622
  • [45] Upwind residual distribution schemes for incompressible flows
    Bogaerts, S
    Degrez, G
    Razafindrakoto, E
    COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 742 - 747
  • [46] Assessment of three preconditioning schemes for solution of the two-dimensional Euler equations at low Mach number flows
    Hejranfar, Kazem
    Kamali-Moghadam, Ramin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (01) : 20 - 52
  • [47] Low Mach number model for compressible flows and application to HTR
    Elmo, M
    Cioni, O
    NUCLEAR ENGINEERING AND DESIGN, 2003, 222 (2-3) : 117 - 124
  • [48] Low Mach number flows in time-dependent domains
    Alì, G
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (06) : 2020 - 2041
  • [49] Recent developments in the computation of compressible low Mach number flows
    Guillard, Herve
    FLOW TURBULENCE AND COMBUSTION, 2006, 76 (04) : 363 - 369
  • [50] A high-resolution scheme for low Mach number flows
    Chakravorty, S
    Mathew, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 46 (03) : 245 - 261