Density enhancement mechanism of upwind schemes for low Mach number flows

被引:0
|
作者
Bo-Xi Lin
Chao Yan
Shu-Sheng Chen
机构
[1] Beihang University,School of Aeronautic Science and Engineering
来源
Acta Mechanica Sinica | 2018年 / 34卷
关键词
Energy equation; Density fluctuation; Roe; TV-MAS; Low speeds; All speeds; Computational fluid dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
Many all-speed Roe schemes have been proposed to improve performance in terms of low speeds. Among them, the F-Roe and T-D-Roe schemes have been found to get incorrect density fluctuation in low Mach flows, which is expected to be with the square of Mach number. Asymptotic analysis presents the mechanism of how the density fluctuation problem relates to the incorrect order of terms in the energy equation ρ~a~U~ΔU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tilde{\rho }} {\tilde{a}} {\tilde{U}}\varDelta U}$$\end{document}. It is known that changing the upwind scheme coefficients of the pressure-difference dissipation term DP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^P$$\end{document} and the velocity-difference dissipation term in the momentum equation DρU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\rho U}$$\end{document} to the order of O(c-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(c^{-1})$$\end{document} and O(c0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(c^{0})$$\end{document} can improve the level of pressure and velocity accuracy at low speeds. This paper shows that corresponding changes in energy equation can also improve the density accuracy in low speeds. We apply this modification to a recently proposed scheme, TV-MAS, to get a new scheme, TV-MAS2. Unsteady Gresho vortex flow, double shear-layer flow, low Mach number flows over the inviscid cylinder, and NACA0012 airfoil show that energy equation modification in these schemes can obtain the expected square Ma scaling of density fluctuations, which is in good agreement with corresponding asymptotic analysis. Therefore, this density correction is expected to be widely implemented into all-speed compressible flow solvers.
引用
收藏
页码:431 / 445
页数:14
相关论文
共 50 条
  • [31] Numerical Simulation of Low Mach Number Reactive Flows
    Tomboulides A.G.
    Lee J.C.Y.
    Orszag S.A.
    Journal of Scientific Computing, 1997, 12 (2) : 139 - 167
  • [32] Boundary conditions for low Mach number reacting flows
    Prosser, Robert
    WSEAS Transactions on Mathematics, 2006, 5 (10) : 1102 - 1107
  • [33] Turbulent transport modeling in low Mach number flows
    Shimomura, Y
    PHYSICS OF FLUIDS, 1999, 11 (10) : 3136 - 3149
  • [34] A Relaxation Scheme for the Simulation of Low Mach Number Flows
    Abbate, Emanuela
    Iollo, Angelo
    Puppo, Gabriella
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-HYPERBOLIC, ELLIPTIC AND PARABOLIC PROBLEMS, 2017, 200 : 227 - 235
  • [35] New approaches for computation of low Mach number flows
    Shima, Eiji
    Kitamura, Keiichi
    COMPUTERS & FLUIDS, 2013, 85 : 143 - 152
  • [36] Numerical simulation of low Mach number reacting flows
    Bell, J. B.
    Aspden, A. J.
    Day, M. S.
    Lijewski, M. J.
    SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2007, 78
  • [37] Numerical simulation of low Mach number reacting flows
    Woosely, S. E.
    Aspden, A. J.
    Bell, J. B.
    Kerstein, A. R.
    Sankaran, V.
    SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
  • [38] A Low Mach Number Model for Moist Atmospheric Flows
    Duarte, Max
    Almgren, Ann S.
    Bell, John B.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2015, 72 (04) : 1605 - 1620
  • [39] Lattice BGK models for low Mach number flows
    Filippova, O
    Hänel, D
    COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 1186 - 1191
  • [40] Low Mach number limit for viscous compressible flows
    Danchin, R
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03): : 459 - 475