New Kamenev-type oscillation criteria for half-linear partial differential equations

被引:0
|
作者
Ge-feng Yang
Zhi-ting Xu
机构
[1] Guangdong University of Foreign Studies,Cisco School of Informatics
[2] South China Normal University,School of Mathematical Sciences
关键词
oscillation; half-linear; partial differential equations; Kamenev-type; Damped equation; 35B05; 35J15; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping (E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$div(A(x)\left\| {\nabla u} \right\|^{p - 2} \nabla u) + \left\langle {b(x),\left\| {\nabla u} \right\|^{p - 2} \nabla u} \right\rangle + c(x)\left| u \right|^{p - 2} u = 0$\end{document} under quite general conditions. These results are extensions of the recent results developed by Sun [Y.G. Sun, New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004) 341–351] for second order ordinary differential equations in a natural way, and improve some existing results in the literature. As applications, we illustrate our main results using two different types of half-linear partial differential equations.
引用
收藏
页码:535 / 548
页数:13
相关论文
共 50 条
  • [41] Kneser-Type Oscillation Criteria for Half-Linear Delay Differential Equations of Third Order
    Masood, Fahd
    Cesarano, Clemente
    Moaaz, Osama
    Askar, Sameh S.
    Alshamrani, Ahmad M.
    El-Metwally, Hamdy
    SYMMETRY-BASEL, 2023, 15 (11):
  • [42] Oscillation and non-oscillation of Euler type half-linear differential equations
    Dosly, Ondrej
    Vesely, Michal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) : 602 - 621
  • [43] New Criteria for Oscillation of Half-Linear Differential Equations with p-Laplacian-like Operators
    Bazighifan, Omar
    Ghanim, F.
    Awrejcewicz, Jan
    Al-Ghafri, Khalil S.
    Al-Kandari, Maryam
    MATHEMATICS, 2021, 9 (20)
  • [44] Oscillation criteria for second order half-linear differential equations with functional arguments
    Chern, JL
    Lian, WC
    Yeh, CC
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 48 (3-4): : 209 - 216
  • [45] INTERVAL CRITERIA FOR OSCILLATION OF SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING
    Xu, Zhiting
    Peng, Shiguo
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (01): : 49 - 56
  • [46] Interval criteria for oscillation of second-order half-linear differential equations
    Wang, QR
    Yang, QG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) : 224 - 236
  • [47] Oscillation criteria for neutral second-order half-linear differential equations with applications to Euler type equations
    Simona Fišnarová
    Robert Mařík
    Boundary Value Problems, 2014
  • [48] Oscillation criteria for neutral second-order half-linear differential equations with applications to Euler type equations
    Fisnarova, Simona
    Marik, Robert
    BOUNDARY VALUE PROBLEMS, 2014,
  • [49] Criteria for Oscillation of Half-Linear Functional Differential Equations of Second-Order
    Almarri, Barakah
    Moaaz, Osama
    Muhib, Ali
    AXIOMS, 2022, 11 (12)
  • [50] Oscillation criteria for second order half-linear differential equations with deviating arguments
    Agarwal, RP
    Grace, SR
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2002, 9 (02): : 217 - 224