New Kamenev-type oscillation criteria for half-linear partial differential equations

被引:0
|
作者
Ge-feng Yang
Zhi-ting Xu
机构
[1] Guangdong University of Foreign Studies,Cisco School of Informatics
[2] South China Normal University,School of Mathematical Sciences
关键词
oscillation; half-linear; partial differential equations; Kamenev-type; Damped equation; 35B05; 35J15; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping (E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$div(A(x)\left\| {\nabla u} \right\|^{p - 2} \nabla u) + \left\langle {b(x),\left\| {\nabla u} \right\|^{p - 2} \nabla u} \right\rangle + c(x)\left| u \right|^{p - 2} u = 0$\end{document} under quite general conditions. These results are extensions of the recent results developed by Sun [Y.G. Sun, New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004) 341–351] for second order ordinary differential equations in a natural way, and improve some existing results in the literature. As applications, we illustrate our main results using two different types of half-linear partial differential equations.
引用
收藏
页码:535 / 548
页数:13
相关论文
共 50 条
  • [31] Oscillation Criteria for Advanced Half-Linear Differential Equations of Second Order
    Hassan, Taher S.
    Kong, Qingkai
    El-Matary, Bassant M.
    MATHEMATICS, 2023, 11 (06)
  • [32] Half-linear differential equations of fourth order: oscillation criteria of solutions
    Omar Bazighifan
    Khalil S. Al-Ghafri
    Maryam Al-Kandari
    F. Ghanim
    Fatemah Mofarreh
    Advances in Continuous and Discrete Models, 2022
  • [33] Half-linear differential equations of fourth order: oscillation criteria of solutions
    Bazighifan, Omar
    Al-Ghafri, Khalil S.
    Al-Kandari, Maryam
    Ghanim, F.
    Mofarreh, Fatemah
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (1):
  • [34] Oscillation of half-linear differential equations with mixed type of argument
    Baculikova, Blanka
    Dzurina, Jozef
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (10) : 1 - 8
  • [35] New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations
    Agarwal, Ravi P.
    Zhang, Chenghui
    Li, Tongxing
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 822 - 828
  • [36] Kamenev-type oscillation criteria for second order matrix differential systems with damping
    Basci, Yasemin
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (05): : 1248 - 1267
  • [37] Kamenev-type oscillation criteria for second-order matrix differential systems
    Wang, QR
    Wu, XM
    Zhu, SM
    APPLIED MATHEMATICS LETTERS, 2003, 16 (06) : 821 - 826
  • [38] Ordinary differential equations in the oscillation theory of partial half-linear differential equation
    Marik, Robert
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) : 194 - 208
  • [39] Oscillation of Half-Linear Differential Equations with Delay
    Fisnarova, Simona
    Marik, Robert
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [40] On Kamenev-type oscillation theorems for second-order differential equations with damping
    Wong, JSW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) : 244 - 257