High-order compact finite volume scheme for the 2D multi-term time fractional sub-diffusion equation

被引:0
|
作者
Baojin Su
Ziwen Jiang
机构
[1] Shandong Normal University,School of Mathematics and Statistics
关键词
2D multi-term time fractional sub-diffusion equation; High-order compact finite volume scheme; Stable; Convergent;
D O I
暂无
中图分类号
学科分类号
摘要
Based on an L1 interpolation operator, a new high-order compact finite volume scheme is derived for the 2D multi-term time fractional sub-diffusion equation. It is shown that the difference scheme is unconditionally convergent and stable in L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }$\end{document}-norm. The convergence order is O(τ2−α+h14+h24)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\tau ^{2-\alpha }+h_{1}^{4}+h_{2}^{4})$\end{document}, where τ is the temporal step size and h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{1}$\end{document} is the spatial step size in one direction, h2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{2}$\end{document} is the spatial step size in another direction. Two numerical examples are implemented, testifying to their efficiency and confirming their convergence order.
引用
收藏
相关论文
共 50 条
  • [41] A high-order compact exponential scheme for the fractional convection-diffusion equation
    Cui, Mingrong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 404 - 416
  • [42] An Efficient Numerical Scheme for Variable-Order Fractional Sub-Diffusion Equation
    Ali, Umair
    Sohail, Muhammad
    Abdullah, Farah Aini
    SYMMETRY-BASEL, 2020, 12 (09):
  • [43] Efficient computational hybrid method for the solution of 2D multi-term fractional order advection-diffusion equation
    Ali Shah, Farman
    Kamran
    Aljawi, Salma
    Bouzgarrou, Souhail
    Alotaibi, Fahad M.
    Gomez-Aguilar, J. F.
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [44] Convergence Order of a Finite Volume Scheme for the Time-Fractional Diffusion Equation
    Bradji, Abdallah
    Fuhrmann, Jurgen
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 33 - 45
  • [45] Application of a hybrid pseudospectral method to a new two-dimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order
    Shah, Farman Ali
    Kamran
    Santina, Dania
    Mlaiki, Nabil
    Aljawi, Salma
    NETWORKS AND HETEROGENEOUS MEDIA, 2024, 19 (01) : 44 - 85
  • [46] Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation
    Qiao, Leijie
    Xu, Da
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1478 - 1493
  • [47] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    A. S. V. Ravi Kanth
    Neetu Garg
    The European Physical Journal Plus, 134
  • [48] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [49] Sixth-order non-uniform combined compact difference scheme for multi-term time fractional diffusion-wave equation
    Soori, Z.
    Aminataei, A.
    APPLIED NUMERICAL MATHEMATICS, 2018, 131 : 72 - 94
  • [50] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843