High-order compact finite volume scheme for the 2D multi-term time fractional sub-diffusion equation

被引:0
|
作者
Baojin Su
Ziwen Jiang
机构
[1] Shandong Normal University,School of Mathematics and Statistics
关键词
2D multi-term time fractional sub-diffusion equation; High-order compact finite volume scheme; Stable; Convergent;
D O I
暂无
中图分类号
学科分类号
摘要
Based on an L1 interpolation operator, a new high-order compact finite volume scheme is derived for the 2D multi-term time fractional sub-diffusion equation. It is shown that the difference scheme is unconditionally convergent and stable in L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }$\end{document}-norm. The convergence order is O(τ2−α+h14+h24)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\tau ^{2-\alpha }+h_{1}^{4}+h_{2}^{4})$\end{document}, where τ is the temporal step size and h1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{1}$\end{document} is the spatial step size in one direction, h2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{2}$\end{document} is the spatial step size in another direction. Two numerical examples are implemented, testifying to their efficiency and confirming their convergence order.
引用
收藏
相关论文
共 50 条
  • [21] ANISOTROPIC EQROT 1 FINITE ELEMENT APPROXIMATION FOR A MULTI-TERM TIME-FRACTIONAL MIXED SUB-DIFFUSION AND DIFFUSION-WAVE EQUATION
    Fan, Huijun
    Zhao, Yanmin
    Wang, Fenling
    Shi, Yanhua
    Liu, Fawang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (03): : 439 - 440
  • [22] A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation
    Hong Sun
    Zhi-zhong Sun
    Numerical Algorithms, 2021, 86 : 761 - 797
  • [23] A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation
    Sun, Hong
    Sun, Zhi-zhong
    NUMERICAL ALGORITHMS, 2021, 86 (02) : 761 - 797
  • [24] New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order
    Ran, Maohua
    Zhang, Chengjian
    APPLIED NUMERICAL MATHEMATICS, 2018, 129 : 58 - 70
  • [25] Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation
    Ali, Umair
    Abdullah, Farah Aini
    Mohyud-Din, Syed Tauseef
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [26] Efficient and Stable Numerical Methods for Multi-Term Time Fractional Sub-Diffusion Equations
    Ren, Jincheng
    Sun, Zhi-zhong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2014, 4 (03) : 242 - 266
  • [27] Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation
    Umair Ali
    Farah Aini Abdullah
    Syed Tauseef Mohyud-Din
    Advances in Difference Equations, 2017
  • [28] A high-order spectral method for the multi-term time-fractional diffusion equations
    Zheng, M.
    Liu, F.
    Anh, V.
    Turner, I.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4970 - 4985
  • [29] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Zhang, Pu
    Pu, Hai
    NUMERICAL ALGORITHMS, 2017, 76 (02) : 573 - 598
  • [30] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Pu Zhang
    Hai Pu
    Numerical Algorithms, 2017, 76 : 573 - 598