Order-Sensitive Domination in Partially Ordered Sets and Graphs

被引:0
|
作者
Yusuf Civan
Zakir Deniz
Mehmet Akif Yetim
机构
[1] Süleyman Demirel University,Department of Mathematics
[2] Düzce University,Department of Mathematics
来源
Order | 2023年 / 40卷
关键词
Domination; Partially ordered set; Order-sensitive; Comparability; Roman domination; Biclique Vertex-partition; 05C69; 06A07; 68Q17;
D O I
暂无
中图分类号
学科分类号
摘要
For a (finite) partially ordered set (poset) P, we call a dominating set D in the comparability graph of P, an order-sensitive dominating set in P if either x ∈ D or else a < x < b in P for some a,b ∈ D for every element x in P which is neither maximal nor minimal, and denote by γos(P), the least size of an order-sensitive dominating set of P. For every graph G and integer k⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 2$$\end{document}, we associate to G a graded poset Pk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr{P}}_{k}(G)$$\end{document} of height k, and prove that γos(P3(G))=γR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\text {os}}({\mathscr{P}}_{3}(G))=\gamma _{\text {R}}(G)$$\end{document} and γos(P4(G))=2γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\text {os}}({\mathscr{P}}_{4}(G))=2\gamma (G)$$\end{document} hold, where γ(G) and γR(G) are the domination and Roman domination number of G respectively. Moreover, we show that the order-sensitive domination number of a poset P exactly corresponds to the biclique vertex-partition number of the associated bipartite transformation of P.
引用
收藏
页码:157 / 172
页数:15
相关论文
共 50 条
  • [1] Order-Sensitive Domination in Partially Ordered Sets and Graphs
    Civan, Yusuf
    Deniz, Zakir
    Yetim, Mehmet Akif
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2023, 40 (01): : 157 - 172
  • [2] CAYLEY GRAPHS OF PARTIALLY ORDERED SETS
    Afkhami, Mojgan
    Barati, Zahra
    Khashyarmanesh, Kazem
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (04)
  • [3] Planar zero divisor graphs of partially ordered sets
    M. Afkhami
    Z. Barati
    K. Khashyarmanesh
    Acta Mathematica Hungarica, 2012, 137 : 27 - 35
  • [4] Projective zero divisor graphs of partially ordered sets
    Parsapour A.
    Javaheri K.A.
    Afrika Matematika, 2017, 28 (3-4) : 575 - 593
  • [5] Planar zero divisor graphs of partially ordered sets
    Afkhami, M.
    Barati, Z.
    Khashyarmanesh, K.
    ACTA MATHEMATICA HUNGARICA, 2012, 137 (1-2) : 27 - 35
  • [6] Zero-divisor graphs of partially ordered sets
    Xue, Zhanjun
    Liu, Sanyang
    APPLIED MATHEMATICS LETTERS, 2010, 23 (04) : 449 - 452
  • [7] CHARACTERIZATION PROBLEMS FOR GRAPHS, PARTIALLY ORDERED SETS, LATTICES, AND FAMILIES OF SETS
    TROTTER, WT
    MOORE, JI
    DISCRETE MATHEMATICS, 1976, 16 (04) : 361 - 381
  • [8] PARTIALLY ORDERED SETS WITH SELF COMPLEMENTARY COMPARABILITY-GRAPHS
    BEHRENDT, G
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1991, 38 (1-2): : 111 - 119
  • [9] The Sperner Property for Polygonal Graphs Considered as Partially Ordered Sets
    Salii, V. N.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (02): : 226 - 231
  • [10] Order-sensitive Neural Constituency Parsing
    Wang, Zhicheng
    Shi, Tianyu
    Xiao, Liyin
    Liu, Cong
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 282 - 287