Order-Sensitive Domination in Partially Ordered Sets and Graphs

被引:0
|
作者
Yusuf Civan
Zakir Deniz
Mehmet Akif Yetim
机构
[1] Süleyman Demirel University,Department of Mathematics
[2] Düzce University,Department of Mathematics
来源
Order | 2023年 / 40卷
关键词
Domination; Partially ordered set; Order-sensitive; Comparability; Roman domination; Biclique Vertex-partition; 05C69; 06A07; 68Q17;
D O I
暂无
中图分类号
学科分类号
摘要
For a (finite) partially ordered set (poset) P, we call a dominating set D in the comparability graph of P, an order-sensitive dominating set in P if either x ∈ D or else a < x < b in P for some a,b ∈ D for every element x in P which is neither maximal nor minimal, and denote by γos(P), the least size of an order-sensitive dominating set of P. For every graph G and integer k⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 2$$\end{document}, we associate to G a graded poset Pk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr{P}}_{k}(G)$$\end{document} of height k, and prove that γos(P3(G))=γR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\text {os}}({\mathscr{P}}_{3}(G))=\gamma _{\text {R}}(G)$$\end{document} and γos(P4(G))=2γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\text {os}}({\mathscr{P}}_{4}(G))=2\gamma (G)$$\end{document} hold, where γ(G) and γR(G) are the domination and Roman domination number of G respectively. Moreover, we show that the order-sensitive domination number of a poset P exactly corresponds to the biclique vertex-partition number of the associated bipartite transformation of P.
引用
收藏
页码:157 / 172
页数:15
相关论文
共 50 条
  • [21] THEOREM ON PARTIALLY ORDERED SETS OF ORDER-PRESERVING MAPPINGS
    DUFFUS, D
    WILLE, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 76 (01) : 14 - 16
  • [22] Birkhoff's order-convergence in partially ordered sets
    Sun, Tao
    Li, Qingguo
    Guo, Lankun
    TOPOLOGY AND ITS APPLICATIONS, 2016, 207 : 156 - 166
  • [23] LINEAR EXTENSIONS AND ORDER POLYNOMIALS OF FINITE PARTIALLY ORDERED SETS
    HIBI, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (04) : 121 - 122
  • [24] Order-Sensitive Imputation for Clustered Missing Values
    Ma, Qian
    Gu, Yu
    Lee, Wang-Chien
    Yu, Ge
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 2147 - 2148
  • [25] Efficient Order-Sensitive Activity Trajectory Search
    Guo, Kaiyang
    Li, Rong-Hua
    Qiao, Shaojie
    Li, Zhenjun
    Zhang, Weipeng
    Lu, Minhua
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2017, PT I, 2017, 10569 : 391 - 405
  • [26] PARTIALLY HOMOGENEOUS PARTIALLY ORDERED SETS
    SARACINO, D
    WOOD, C
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (02) : 216 - 224
  • [27] CHARACTERIZATION PROBLEMS FOR GRAPHS, PARTIALLY ORDERED SETS, LATTICES, AND FAMILIES OF SETS - PRELIMINARY-REPORT
    TROTTER, WT
    MOORE, JI
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A41 - A41
  • [28] Tractable Partially Ordered Sets Derived from Root Systems and Biased Graphs
    Hanlon P.
    Zaslavsky T.
    Order, 1997, 14 (3) : 229 - 257
  • [29] Tractable partially ordered sets derived from root systems and biased graphs
    Hanlon, P
    Zaslavsky, T
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1998, 14 (03): : 229 - 257
  • [30] Order-sensitive retrieval in search engine using wildcard
    Liu, Huilin
    Wang, Guoren
    Wang, Huan
    Wang, Guangxing
    Journal of Computational Information Systems, 2007, 3 (04): : 1615 - 1622