Order-Sensitive Domination in Partially Ordered Sets and Graphs

被引:0
|
作者
Civan, Yusuf [1 ]
Deniz, Zakir [2 ]
Yetim, Mehmet Akif [1 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkey
[2] Duzce Univ, Dept Math, TR-81620 Duzce, Turkey
关键词
Domination; Partially ordered set; Order-sensitive; Comparability; Roman domination; Biclique Vertex-partition;
D O I
10.1007/s11083-022-09599-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a (finite) partially ordered set (poset) P, we call a dominating set D in the comparability graph of P, an order-sensitive dominating set in P if either x is an element of D or else a < x < b in P for some a,b is an element of D for every element x in P which is neither maximal nor minimal, and denote by gamma(os)(P), the least size of an order-sensitive dominating set of P. For every graph G and integer k >= 2, we associate to G a graded poset P-k(G) of height k, and prove that gamma(os)(P-3(G)) = gamma(R)(G) and gamma(os)(P-4(G)) = 2 gamma(G) hold, where gamma(G) and gamma(R)(G) are the domination and Roman domination number of G respectively. Moreover, we show that the order-sensitive domination number of a poset P exactly corresponds to the biclique vertex-partition number of the associated bipartite transformation of P.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 50 条
  • [1] Order-Sensitive Domination in Partially Ordered Sets and Graphs
    Yusuf Civan
    Zakir Deniz
    Mehmet Akif Yetim
    Order, 2023, 40 : 157 - 172
  • [2] CAYLEY GRAPHS OF PARTIALLY ORDERED SETS
    Afkhami, Mojgan
    Barati, Zahra
    Khashyarmanesh, Kazem
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (04)
  • [3] Planar zero divisor graphs of partially ordered sets
    M. Afkhami
    Z. Barati
    K. Khashyarmanesh
    Acta Mathematica Hungarica, 2012, 137 : 27 - 35
  • [4] Projective zero divisor graphs of partially ordered sets
    Parsapour A.
    Javaheri K.A.
    Afrika Matematika, 2017, 28 (3-4) : 575 - 593
  • [5] Planar zero divisor graphs of partially ordered sets
    Afkhami, M.
    Barati, Z.
    Khashyarmanesh, K.
    ACTA MATHEMATICA HUNGARICA, 2012, 137 (1-2) : 27 - 35
  • [6] Zero-divisor graphs of partially ordered sets
    Xue, Zhanjun
    Liu, Sanyang
    APPLIED MATHEMATICS LETTERS, 2010, 23 (04) : 449 - 452
  • [7] CHARACTERIZATION PROBLEMS FOR GRAPHS, PARTIALLY ORDERED SETS, LATTICES, AND FAMILIES OF SETS
    TROTTER, WT
    MOORE, JI
    DISCRETE MATHEMATICS, 1976, 16 (04) : 361 - 381
  • [8] PARTIALLY ORDERED SETS WITH SELF COMPLEMENTARY COMPARABILITY-GRAPHS
    BEHRENDT, G
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1991, 38 (1-2): : 111 - 119
  • [9] The Sperner Property for Polygonal Graphs Considered as Partially Ordered Sets
    Salii, V. N.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (02): : 226 - 231
  • [10] Order-sensitive Neural Constituency Parsing
    Wang, Zhicheng
    Shi, Tianyu
    Xiao, Liyin
    Liu, Cong
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 282 - 287