New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes

被引:0
|
作者
Hao Chen
机构
[1] Jinan University,College of Information Science and Technology/Cyber Security
来源
关键词
Hermitian self-orthogonal code; MDS Quantum code; MDS entanglement-assisted quantum code; 94B15; 81T08;
D O I
暂无
中图分类号
学科分类号
摘要
The intersection C∩C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C}\cap \textbf{C}^{\perp _H}$$\end{document} of a linear code C⊂Fq2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{F}_{q^2}^n$$\end{document} and its Hermitian dual C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C}^{\perp _H}$$\end{document} is called the Hermitian hull of this code. A linear code C⊂Fq2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{F}_{q^2}^n$$\end{document} satisfying C⊂C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{C}^{\perp _H}$$\end{document} is called Hermitian self-orthogonal. Many Hermitian self-orthogonal codes were given for the construction of MDS quantum error correction codes (QECCs). In this paper we prove that for a nonnegative integer h satisfying 0≤h≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le h \le k$$\end{document}, a linear Hermitian self-orthogonal [n,k]q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[n, k]_{q^2}$$\end{document} code is equivalent to a linear h-dimension Hermitian hull code. Therefore a lot of new MDS entanglement-assisted quantum error correction (EAQEC) codes can be constructed from previous known Hermitian self-orthogonal codes. Actually our method shows that previous constructed quantum MDS codes from Hermitian self-orthogonal codes can be transformed to MDS entanglement-assisted quantum codes with nonzero consumption parameter c directly. We prove that MDS EAQEC [[n,k,d;c]]q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[n, k, d; c]]_q$$\end{document} codes with nonzero c parameters and d≤n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le \frac{n+2}{2}$$\end{document} exist for arbitrary length n satisfying n≤q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \le q^2+1$$\end{document}. Moreover any QECC constructed from k-dimensional Hermitian self-orthogonal codes can be transformed to k different EAQEC codes. We also prove that MDS entanglement-assisted quantum codes exist for all lengths n≤q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le q^2+1$$\end{document}.
引用
收藏
页码:2665 / 2676
页数:11
相关论文
共 50 条
  • [41] Construction of new entanglement-assisted quantum MDS codes via cyclic codes
    Lu, Hongmei
    Kai, Xiaoshan
    Zhu, Shixin
    QUANTUM INFORMATION PROCESSING, 2022, 21 (06)
  • [42] Construction of quantum MDS codes from Hermitian self-orthogonal generalized Reed-Solomon codes
    Wan, Ruhao
    Zheng, Xiujing
    Zhu, Shixin
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2025, 17 (01): : 181 - 205
  • [43] Two Families of Entanglement-Assisted Quantum MDS Codes from Cyclic Codes
    Lu, Liangdong
    Ma, Wenping
    Li, Ruihu
    Cao, Hao
    Ren, Jinshen
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (05) : 1833 - 1842
  • [44] Two Families of Entanglement-Assisted Quantum MDS Codes from Constacyclic Codes
    Liangdong Lu
    Wenping Ma
    Luobin Guo
    International Journal of Theoretical Physics, 2020, 59 : 1657 - 1667
  • [45] Two Families of Entanglement-Assisted Quantum MDS Codes from Cyclic Codes
    Liangdong Lu
    Wenping Ma
    Ruihu Li
    Hao Cao
    Jinshen Ren
    International Journal of Theoretical Physics, 2021, 60 : 1833 - 1842
  • [46] Entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes
    Renjie Jin
    Yiran Cao
    Jinquan Luo
    Quantum Information Processing, 2021, 20
  • [47] Two Families of Entanglement-Assisted Quantum MDS Codes from Constacyclic Codes
    Lu, Liangdong
    Ma, Wenping
    Guo, Luobin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (06) : 1657 - 1667
  • [48] Asymmetric Entanglement-Assisted Quantum MDS Codes Constructed from Constacyclic Codes
    Chen, Jianzhang
    Fang, Wanchuan
    Zhou, Shuo
    Qiu, Jie
    Zhang, Chenyang
    Xu, Yixin
    Zeng, Bozhe
    Chen, Youqin
    ENTROPY, 2023, 25 (12)
  • [49] Entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes
    Lanqiang Li
    Shixin Zhu
    Li Liu
    Xiaoshan Kai
    Quantum Information Processing, 2019, 18
  • [50] Application of GRS codes to some entanglement-assisted quantum MDS codes
    Wang, Guohui
    Tang, Chunming
    QUANTUM INFORMATION PROCESSING, 2022, 21 (03)