New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes

被引:0
|
作者
Hao Chen
机构
[1] Jinan University,College of Information Science and Technology/Cyber Security
来源
关键词
Hermitian self-orthogonal code; MDS Quantum code; MDS entanglement-assisted quantum code; 94B15; 81T08;
D O I
暂无
中图分类号
学科分类号
摘要
The intersection C∩C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C}\cap \textbf{C}^{\perp _H}$$\end{document} of a linear code C⊂Fq2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{F}_{q^2}^n$$\end{document} and its Hermitian dual C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C}^{\perp _H}$$\end{document} is called the Hermitian hull of this code. A linear code C⊂Fq2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{F}_{q^2}^n$$\end{document} satisfying C⊂C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{C}^{\perp _H}$$\end{document} is called Hermitian self-orthogonal. Many Hermitian self-orthogonal codes were given for the construction of MDS quantum error correction codes (QECCs). In this paper we prove that for a nonnegative integer h satisfying 0≤h≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le h \le k$$\end{document}, a linear Hermitian self-orthogonal [n,k]q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[n, k]_{q^2}$$\end{document} code is equivalent to a linear h-dimension Hermitian hull code. Therefore a lot of new MDS entanglement-assisted quantum error correction (EAQEC) codes can be constructed from previous known Hermitian self-orthogonal codes. Actually our method shows that previous constructed quantum MDS codes from Hermitian self-orthogonal codes can be transformed to MDS entanglement-assisted quantum codes with nonzero consumption parameter c directly. We prove that MDS EAQEC [[n,k,d;c]]q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[n, k, d; c]]_q$$\end{document} codes with nonzero c parameters and d≤n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le \frac{n+2}{2}$$\end{document} exist for arbitrary length n satisfying n≤q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \le q^2+1$$\end{document}. Moreover any QECC constructed from k-dimensional Hermitian self-orthogonal codes can be transformed to k different EAQEC codes. We also prove that MDS entanglement-assisted quantum codes exist for all lengths n≤q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le q^2+1$$\end{document}.
引用
收藏
页码:2665 / 2676
页数:11
相关论文
共 50 条
  • [21] New classes of entanglement-assisted quantum MDS codes
    Renjie Jin
    Derong Xie
    Jinquan Luo
    Quantum Information Processing, 2020, 19
  • [22] New classes of entanglement-assisted quantum MDS codes
    Jin, Renjie
    Xie, Derong
    Luo, Jinquan
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [23] NEW ENTANGLEMENT-ASSISTED MDS QUANTUM CONSTACYCLIC CODES
    Liu, Hangyu
    Huang, Sujuan
    Wang, Liqi
    Zhu, Shixin
    QUANTUM INFORMATION & COMPUTATION, 2024, 24 (9-10) : 766 - 799
  • [24] New Entanglement-Assisted Quantum MDS Codes with Maximal Entanglement
    Sari, Mustafa
    Koroglu, Mehmet E.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (01) : 243 - 253
  • [25] Cyclic codes and some new entanglement-assisted quantum MDS codes
    Xiaojing Chen
    Shixin Zhu
    Wan Jiang
    Designs, Codes and Cryptography, 2021, 89 : 2533 - 2551
  • [26] Cyclic codes and some new entanglement-assisted quantum MDS codes
    Chen, Xiaojing
    Zhu, Shixin
    Jiang, Wan
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2533 - 2551
  • [27] Entanglement-assisted quantum MDS codes constructed from negacyclic codes
    Chen, Jianzhang
    Huang, Yuanyuan
    Feng, Chunhui
    Chen, Riqing
    QUANTUM INFORMATION PROCESSING, 2017, 16 (12)
  • [28] Entanglement-assisted quantum MDS codes constructed from constacyclic codes
    Xiaojing Chen
    Shixin Zhu
    Xiaoshan Kai
    Quantum Information Processing, 2018, 17
  • [29] Entanglement-assisted quantum MDS codes constructed from constacyclic codes
    Chen, Xiaojing
    Zhu, Shixin
    Kai, Xiaoshan
    QUANTUM INFORMATION PROCESSING, 2018, 17 (10)
  • [30] Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes
    Jin, Lingfei
    Kan, Haibin
    Wen, Jie
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (03) : 463 - 471