New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes

被引:0
|
作者
Hao Chen
机构
[1] Jinan University,College of Information Science and Technology/Cyber Security
来源
关键词
Hermitian self-orthogonal code; MDS Quantum code; MDS entanglement-assisted quantum code; 94B15; 81T08;
D O I
暂无
中图分类号
学科分类号
摘要
The intersection C∩C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C}\cap \textbf{C}^{\perp _H}$$\end{document} of a linear code C⊂Fq2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{F}_{q^2}^n$$\end{document} and its Hermitian dual C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C}^{\perp _H}$$\end{document} is called the Hermitian hull of this code. A linear code C⊂Fq2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{F}_{q^2}^n$$\end{document} satisfying C⊂C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{C}^{\perp _H}$$\end{document} is called Hermitian self-orthogonal. Many Hermitian self-orthogonal codes were given for the construction of MDS quantum error correction codes (QECCs). In this paper we prove that for a nonnegative integer h satisfying 0≤h≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le h \le k$$\end{document}, a linear Hermitian self-orthogonal [n,k]q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[n, k]_{q^2}$$\end{document} code is equivalent to a linear h-dimension Hermitian hull code. Therefore a lot of new MDS entanglement-assisted quantum error correction (EAQEC) codes can be constructed from previous known Hermitian self-orthogonal codes. Actually our method shows that previous constructed quantum MDS codes from Hermitian self-orthogonal codes can be transformed to MDS entanglement-assisted quantum codes with nonzero consumption parameter c directly. We prove that MDS EAQEC [[n,k,d;c]]q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[n, k, d; c]]_q$$\end{document} codes with nonzero c parameters and d≤n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le \frac{n+2}{2}$$\end{document} exist for arbitrary length n satisfying n≤q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \le q^2+1$$\end{document}. Moreover any QECC constructed from k-dimensional Hermitian self-orthogonal codes can be transformed to k different EAQEC codes. We also prove that MDS entanglement-assisted quantum codes exist for all lengths n≤q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le q^2+1$$\end{document}.
引用
收藏
页码:2665 / 2676
页数:11
相关论文
共 50 条
  • [1] New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes
    Chen, Hao
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (08) : 2665 - 2676
  • [2] Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes
    Jin, Lingfei
    Ling, San
    Luo, Jinquan
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4735 - 4740
  • [3] New entanglement-assisted quantum MDS codes
    Pang, Binbin
    Zhu, Shixin
    Wang, Liqi
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2021, 19 (03)
  • [4] Hermitian Hulls of Constacyclic Codes and A New Family of Entanglement-Assisted Quantum MDS Codes
    Yuhua Sun
    Yi Song
    Tongjiang Yan
    International Journal of Theoretical Physics, 61
  • [5] Hermitian Hulls of Constacyclic Codes and A New Family of Entanglement-Assisted Quantum MDS Codes
    Sun, Yuhua
    Song, Yi
    Yan, Tongjiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (09)
  • [6] New entanglement-assisted MDS quantum codes from constacyclic codes
    Mehmet E. Koroglu
    Quantum Information Processing, 2019, 18
  • [7] New entanglement-assisted MDS quantum codes from constacyclic codes
    Koroglu, Mehmet E.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (02)
  • [8] Entanglement-assisted quantum MDS codes from cyclic codes
    Wang, Liqi
    Zhu, Shixin
    Sun, Zhonghua
    QUANTUM INFORMATION PROCESSING, 2020, 19 (02)
  • [9] Entanglement-assisted quantum MDS codes from negacyclic codes
    Liangdong Lu
    Ruihu Li
    Luobin Guo
    Yuena Ma
    Yang Liu
    Quantum Information Processing, 2018, 17
  • [10] Entanglement-assisted quantum MDS codes from negacyclic codes
    Lu, Liangdong
    Li, Ruihu
    Guo, Luobin
    Ma, Yuena
    Liu, Yang
    QUANTUM INFORMATION PROCESSING, 2018, 17 (03)