Algebraic Independence of Reciprocal Sums of Binary Recurrences II

被引:0
|
作者
Kumiko Nishioka
机构
[1] Keio University,
[2] Yokohama,undefined
[3] Japan,undefined
来源
关键词
2000 Mathematics Subject Classification: 11J81; Key words: Algebraic independence; Mahler’s method; binary recurrences;
D O I
暂无
中图分类号
学科分类号
摘要
 Algebraic independence of the numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} for various d and l, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is a periodic sequence of algebraic numbers and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is a sequence of integers satisfying a binary linear recurrence relation, is studied by Mahler’s method.
引用
收藏
页码:123 / 141
页数:18
相关论文
共 50 条
  • [21] Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    RAMANUJAN JOURNAL, 2008, 17 (03): : 429 - 446
  • [22] Algebraic relations for reciprocal sums of even terms in Fibonacci numbers
    Elsner C.
    Shimomura S.
    Shiokawa I.
    Journal of Mathematical Sciences, 2012, 180 (5) : 650 - 671
  • [23] Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers
    C. Elsner
    S. Shimomura
    I. Shiokawa
    The Ramanujan Journal, 2008, 17 : 429 - 446
  • [24] Exceptional algebraic relations for reciprocal sums of Fibonacci and Lucas numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 17 - +
  • [25] Algebraic Independence of the Values of Power Series and Their Derivatives Generated by Linear Recurrences
    Ide, Haruki
    Tanaka, Taka-aki
    Toyama, Kento
    TOKYO JOURNAL OF MATHEMATICS, 2022, 45 (02) : 519 - 545
  • [26] Algebraic Independence by Approximation Method (II)
    Yaochen Zhu
    Acta Mathematica Sinica, 2000, 16 : 395 - 398
  • [27] Algebraic independence by approximation method (II)
    Zhu, YC
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2000, 16 (03): : 395 - 398
  • [28] FORMULAS FOR WEIGHTED BINOMIAL SUMS USING THE POWERS OF TERMS OF BINARY RECURRENCES
    Kilic, Emrah
    Ulutas, Yucel Turker
    Omur, Nese
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (01) : 53 - 65
  • [29] Reciprocal Sums of Quadruple Product of Generalized Binary Sequences with Indices
    Xi, Gaowen
    UTILITAS MATHEMATICA, 2015, 97 : 321 - 328
  • [30] ALGEBRAIC PROPERTIES OF HERMITIAN SUMS OF SQUARES, II
    Brooks, Jennifer
    Grundmeier, Dusty
    Schenck, Hal
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (08) : 3471 - 3476