Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers

被引:9
|
作者
Elsner, Carsten [1 ]
Shimomura, Shun [2 ]
Shiokawa, Iekata [2 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, FHDW Hannover, D-30173 Hannover, Germany
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
来源
RAMANUJAN JOURNAL | 2008年 / 17卷 / 03期
关键词
Algebraic independence; Fibonacci numbers; Lucas numbers; Jacobian elliptic functions; Ramanujan functions; q-series; Nesterenko's theorem;
D O I
10.1007/s11139-007-9019-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the algebraic independence of the reciprocal sums of odd terms in Fibonacci numbers Sigma(infinity)(n=1) F-2n-1(-1), Sigma(infinity)(n=1) F-2n-1(-2) (n=1), Sigma(infinity)(n=1) F(2n-1)(-3)and write each Sigma(infinity)(n=1) F-2n-1(-s) (s >= 4) as an explicit rational function of these three numbers over Q. Similar results are obtained for various series including the reciprocal sums of odd terms in Lucas numbers.
引用
收藏
页码:429 / 446
页数:18
相关论文
共 50 条
  • [1] Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers
    C. Elsner
    S. Shimomura
    I. Shiokawa
    The Ramanujan Journal, 2008, 17 : 429 - 446
  • [2] Algebraic relations for reciprocal sums of even terms in Fibonacci numbers
    Elsner C.
    Shimomura S.
    Shiokawa I.
    Journal of Mathematical Sciences, 2012, 180 (5) : 650 - 671
  • [3] Algebraic relations for reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    ACTA ARITHMETICA, 2007, 130 (01) : 37 - 60
  • [4] Exceptional algebraic relations for reciprocal sums of Fibonacci and Lucas numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 17 - +
  • [5] The reciprocal sums of even and odd terms in the Fibonacci sequence
    Wang, Andrew Y. Z.
    Zhang, Fan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 13
  • [6] The reciprocal sums of even and odd terms in the Fibonacci sequence
    Andrew YZ Wang
    Fan Zhang
    Journal of Inequalities and Applications, 2015
  • [7] Algebraic independence results for reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    ACTA ARITHMETICA, 2011, 148 (03) : 205 - 223
  • [8] Algebraic independence results for reciprocal sums of Fibonacci and Lucas numbers
    Stein, Martin
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 101 - 107
  • [9] ALGEBRAIC INDEPENDENCE OF MODIFIED RECIPROCAL SUMS OF PRODUCTS OF FIBONACCI NUMBERS
    Tanaka, Taka-aki
    TSUKUBA JOURNAL OF MATHEMATICS, 2006, 30 (02) : 341 - 357
  • [10] Reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Lekata
    DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 77 - +