Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers

被引:9
|
作者
Elsner, Carsten [1 ]
Shimomura, Shun [2 ]
Shiokawa, Iekata [2 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, FHDW Hannover, D-30173 Hannover, Germany
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
来源
RAMANUJAN JOURNAL | 2008年 / 17卷 / 03期
关键词
Algebraic independence; Fibonacci numbers; Lucas numbers; Jacobian elliptic functions; Ramanujan functions; q-series; Nesterenko's theorem;
D O I
10.1007/s11139-007-9019-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the algebraic independence of the reciprocal sums of odd terms in Fibonacci numbers Sigma(infinity)(n=1) F-2n-1(-1), Sigma(infinity)(n=1) F-2n-1(-2) (n=1), Sigma(infinity)(n=1) F(2n-1)(-3)and write each Sigma(infinity)(n=1) F-2n-1(-s) (s >= 4) as an explicit rational function of these three numbers over Q. Similar results are obtained for various series including the reciprocal sums of odd terms in Lucas numbers.
引用
收藏
页码:429 / 446
页数:18
相关论文
共 50 条
  • [31] LINEAR INDEPENDENCE RESULTS FOR THE RECIPROCAL SUMS OF FIBONACCI NUMBERS ASSOCIATED WITH DIRICHLET CHARACTERS
    Ei, Hiromi
    Luca, Florian
    Tachiya, Yohei
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2017, 54 (01) : 61 - 81
  • [32] Some Arithmetical Results on Reciprocal Sums of Certain Fibonacci-Type Numbers
    Bundschuh, Peter
    Vaananen, Keijo
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2016, 40 (06) : 797 - 814
  • [33] Sums of consecutive Fibonacci numbers
    Díaz-Barrero, JL
    Egozcue, JJ
    FIBONACCI QUARTERLY, 2003, 41 (04): : 381 - 381
  • [34] Sums of reciprocals of Fibonacci numbers
    Herrmann, E
    FIBONACCI QUARTERLY, 2004, 42 (04): : 379 - 380
  • [35] SUMS OF GENERALIZED FIBONACCI NUMBERS
    Cerin, Zvonko
    Gianella, Gian Mario
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 12 (02): : 157 - 168
  • [36] Primes as Sums of Fibonacci Numbers
    Drmota, Michael
    Mulllner, Clemens
    Spiegelhofer, Lukas
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 305 (1537) : I - +
  • [37] On the sums of digits of Fibonacci numbers
    Terr, DC
    FIBONACCI QUARTERLY, 1996, 34 (04): : 349 - 355
  • [38] On the Fibonacci numbers and the Dedekind sums
    Zhang, WP
    Yi, Y
    FIBONACCI QUARTERLY, 2000, 38 (03): : 223 - 226
  • [39] THE SUMS OF THE CONSECUTIVE FIBONACCI NUMBERS
    Shtefan, Dmitriy
    Dobrovolska, Irina
    FIBONACCI QUARTERLY, 2018, 56 (03): : 229 - 236
  • [40] On the reciprocal sums of the generalized Fibonacci sequences
    Zhang, Han
    Wu, Zhengang
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,