Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers

被引:9
|
作者
Elsner, Carsten [1 ]
Shimomura, Shun [2 ]
Shiokawa, Iekata [2 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, FHDW Hannover, D-30173 Hannover, Germany
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
来源
RAMANUJAN JOURNAL | 2008年 / 17卷 / 03期
关键词
Algebraic independence; Fibonacci numbers; Lucas numbers; Jacobian elliptic functions; Ramanujan functions; q-series; Nesterenko's theorem;
D O I
10.1007/s11139-007-9019-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the algebraic independence of the reciprocal sums of odd terms in Fibonacci numbers Sigma(infinity)(n=1) F-2n-1(-1), Sigma(infinity)(n=1) F-2n-1(-2) (n=1), Sigma(infinity)(n=1) F(2n-1)(-3)and write each Sigma(infinity)(n=1) F-2n-1(-s) (s >= 4) as an explicit rational function of these three numbers over Q. Similar results are obtained for various series including the reciprocal sums of odd terms in Lucas numbers.
引用
收藏
页码:429 / 446
页数:18
相关论文
共 50 条
  • [41] ON THE SUM OF RECIPROCAL FIBONACCI NUMBERS
    Ohtsuka, Hideyuki
    Nakamura, Shigeru
    FIBONACCI QUARTERLY, 2008, 46-47 (02): : 153 - 159
  • [42] On the reciprocal sums of the generalized Fibonacci sequences
    Han Zhang
    Zhengang Wu
    Advances in Difference Equations, 2013
  • [43] Fibonacci numbers as sums of two Padovan numbers
    Garcia Lomeli, Ana Cecilia
    Hernandez Hernandez, Santos
    Luca, Florian
    AFRIKA MATEMATIKA, 2022, 33 (01)
  • [44] Fibonacci numbers as sums of two Padovan numbers
    Ana Cecilia García Lomelí
    Santos Hernández Hernández
    Florian Luca
    Afrika Matematika, 2022, 33
  • [45] Reciprocal Sums of the Tribonacci Numbers
    Anantakitpaisal, Pornpawee
    Kuhapatanakul, Kantaphon
    JOURNAL OF INTEGER SEQUENCES, 2016, 19 (02)
  • [46] Sums of Reciprocals of Squares of Fibonacci Numbers
    Ohtsuka, Hideyuki
    FIBONACCI QUARTERLY, 2012, 50 (03): : 284 - 284
  • [47] Sums of Fibonacci numbers that are perfect powers
    Ziegler, Volker
    QUAESTIONES MATHEMATICAE, 2023, 46 (08) : 1717 - 1742
  • [48] ON SUMS OF FIBONACCI NUMBERS MODULO p
    Garcia, Victor C.
    Luca, Florian
    Mejia Huguet, V. Janitzio
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) : 413 - 419
  • [49] SUMS OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS
    BERZSENYI, G
    FIBONACCI QUARTERLY, 1975, 13 (04): : 343 - &
  • [50] POWER SUMS OF FIBONACCI AND LUCAS NUMBERS
    Chu, Wenchang
    Li, Nadia N.
    QUAESTIONES MATHEMATICAE, 2011, 34 (01) : 75 - 83