A Deterministic Algorithm to Compute Approximate Roots of Polynomial Systems in Polynomial Average Time

被引:0
|
作者
Pierre Lairez
机构
[1] Technische Universität Berlin,Institut für Mathematik
关键词
Polynomial system; Homotopy continuation; Complexity; Smale’s 17th problem; Derandomization; Primary 68Q25; Secondary 65H10; 65H20; 65Y20;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a deterministic algorithm that computes an approximate root of n complex polynomial equations in n unknowns in average polynomial time with respect to the size of the input, in the Blum–Shub–Smale model with square root. It rests upon a derandomization of an algorithm of Beltrán and Pardo and gives a deterministic affirmative answer to Smale’s 17th problem. The main idea is to make use of the randomness contained in the input itself.
引用
收藏
页码:1265 / 1292
页数:27
相关论文
共 50 条
  • [31] A polynomial time algorithm to compute the connected treewidth of a series-parallel graph
    Mescoff, Guillaume
    Paul, Christophe
    Thilikos, Dimitrios M.
    DISCRETE APPLIED MATHEMATICS, 2022, 312 : 72 - 85
  • [33] Asynchronous approach in the plane: a deterministic polynomial algorithm
    Bouchard, Sebastien
    Bournat, Marjorie
    Dieudonne, Yoann
    Dubois, Swan
    Petit, Franck
    DISTRIBUTED COMPUTING, 2019, 32 (04) : 317 - 337
  • [34] An algorithm to compute the Teichmüller polynomial from matrices
    Hyungryul Baik
    Chenxi Wu
    KyeongRo Kim
    TaeHyouk Jo
    Geometriae Dedicata, 2020, 204 : 175 - 189
  • [35] Asynchronous approach in the plane: a deterministic polynomial algorithm
    Sébastien Bouchard
    Marjorie Bournat
    Yoann Dieudonné
    Swan Dubois
    Franck Petit
    Distributed Computing, 2019, 32 : 317 - 337
  • [36] Sets computable in polynomial time on average
    Schuler, R
    Yamakami, T
    COMPUTING AND COMBINATORICS, 1995, 959 : 400 - 409
  • [37] Approximate reachability computation for polynomial systems
    Dang, T
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, PROCEEDINGS, 2006, 3927 : 138 - 152
  • [38] Interpolation by lattice polynomial functions: A polynomial time algorithm
    Brabant, Quentin
    Couceiro, Miguel
    Figueira, Jose Rui
    FUZZY SETS AND SYSTEMS, 2019, 368 : 101 - 118
  • [39] Finding Cactus Roots in Polynomial Time
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    Stewart, Anthony
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (06) : 1409 - 1426
  • [40] Finding Cactus Roots in Polynomial Time
    Petr A. Golovach
    Dieter Kratsch
    Daniël Paulusma
    Anthony Stewart
    Theory of Computing Systems, 2018, 62 : 1409 - 1426