On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings

被引:0
|
作者
Michael A. Bekos
Henry Förster
Michael Kaufmann
机构
[1] Universität Tübingen,Wilhelm
来源
Algorithmica | 2019年 / 81卷
关键词
Graph drawing; Smooth orthogonal; Octilinear;
D O I
暂无
中图分类号
学科分类号
摘要
We study two variants of the well-known orthogonal graph drawing model: (1) the smooth orthogonal, and (2) the octilinear. Both models are extensions of the orthogonal one, by supporting one additional type of edge segments (circular arcs and diagonal segments, respectively). For planar graphs of maximum vertex degree 4, we analyze relationships between the graph classes that can be drawn bendless in the two models and we also prove NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-hardness for a restricted version of the bendless drawing problem for both models. For planar graphs of higher vertex degree, we present an algorithm that produces bi-monotone smooth orthogonal drawings with at most two segments per edge, which also guarantees a linear number of edges with exactly one segment.
引用
收藏
页码:2046 / 2071
页数:25
相关论文
共 50 条
  • [31] Algorithms for area-efficient orthogonal drawings
    Papakostas, A
    Tollis, IG
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 9 (1-2): : 83 - 110
  • [32] Computing orthogonal drawings with the minimum number of bends
    Bertolazzi, P
    Di Battista, G
    Didimo, W
    ALGORITHMS AND DATA STRUCTURES, 1997, 1272 : 331 - 344
  • [33] Efficient orthogonal drawings of high degree graphs
    Papakostas, A
    Tollis, IG
    ALGORITHMICA, 2000, 26 (01) : 100 - 125
  • [34] Computational and Human Evaluations of Orthogonal Graph Drawings
    Mirza, Irfan Baig
    Huang, Weidong
    Georgakopoulos, Dimitrios
    Liu, Hengyang
    2019 23RD INTERNATIONAL CONFERENCE IN INFORMATION VISUALIZATION - PT II (IV-2 2019), 2019, : 74 - 77
  • [35] Computing orthogonal drawings in a variable embedding setting
    Didimo, W
    Liotta, G
    ALGORITHMS AND COMPUTATIONS, 1998, 1533 : 79 - 88
  • [36] LOWER BOUNDS FOR PLANAR ORTHOGONAL DRAWINGS OF GRAPHS
    TAMASSIA, R
    TOLLIS, IG
    VITTER, JS
    INFORMATION PROCESSING LETTERS, 1991, 39 (01) : 35 - 40
  • [37] Orthogonal drawings of graphs with vertex and edge labels
    Binucci, C
    Didimo, W
    Liotta, G
    Nonato, M
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 32 (02): : 71 - 114
  • [38] Parallel algorithm for planar orthogonal grid drawings
    Tamassia, Roberto
    Tollis, Ioannis G.
    Vitter, Jeffrey Scott
    Parallel Processing Letters, 2000, 10 (01): : 141 - 150
  • [39] Orthogonal drawings of plane graphs without bends
    Rahman, S
    Naznin, M
    Nishizeki, T
    GRAPH DRAWING, 2002, 2265 : 392 - 406
  • [40] Computing orthogonal drawings with the minimum number of bends
    Bertolazzi, P
    Di Battista, G
    Didimo, W
    IEEE TRANSACTIONS ON COMPUTERS, 2000, 49 (08) : 826 - 840