On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings

被引:0
|
作者
Michael A. Bekos
Henry Förster
Michael Kaufmann
机构
[1] Universität Tübingen,Wilhelm
来源
Algorithmica | 2019年 / 81卷
关键词
Graph drawing; Smooth orthogonal; Octilinear;
D O I
暂无
中图分类号
学科分类号
摘要
We study two variants of the well-known orthogonal graph drawing model: (1) the smooth orthogonal, and (2) the octilinear. Both models are extensions of the orthogonal one, by supporting one additional type of edge segments (circular arcs and diagonal segments, respectively). For planar graphs of maximum vertex degree 4, we analyze relationships between the graph classes that can be drawn bendless in the two models and we also prove NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-hardness for a restricted version of the bendless drawing problem for both models. For planar graphs of higher vertex degree, we present an algorithm that produces bi-monotone smooth orthogonal drawings with at most two segments per edge, which also guarantees a linear number of edges with exactly one segment.
引用
收藏
页码:2046 / 2071
页数:25
相关论文
共 50 条
  • [21] Modifying Orthogonal Drawings for Label Placement
    Kakoulis, Konstantinos G.
    Tollis, Ioannis G.
    ALGORITHMS, 2016, 9 (02):
  • [22] Morphing Orthogonal Planar Graph Drawings
    Lubiw, Anna
    Petrick, Mark
    Spriggs, Michael
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 222 - 230
  • [23] Morphing Orthogonal Planar Graph Drawings
    Biedl, Therese
    Lubiw, Anna
    Petrick, Mark
    Spriggs, Michael
    ACM TRANSACTIONS ON ALGORITHMS, 2013, 9 (04)
  • [24] A better heuristic for orthogonal graph drawings
    Biedl, T
    Kant, G
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 9 (03): : 159 - 180
  • [25] Untangling circular drawings: Algorithms and complexity
    Bhore, Sujoy
    Li, Guangping
    Noellenburg, Martin
    Rutter, Ignaz
    Wu, Hsiang-Yun
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2023, 111
  • [26] Intentions in and relations among design drawings
    Do, Ellen Yi-Luen
    Gross, Mark D.
    Neiman, Bennett
    Zimring, Craig
    Design Studies, 2000, 21 (05) : 483 - 503
  • [27] Optimal Morphs of Planar Orthogonal Drawings II
    van Goethem, Arthur
    Speckmann, Bettina
    Verbeek, Kevin
    GRAPH DRAWING AND NETWORK VISUALIZATION, 2019, 11904 : 33 - 45
  • [28] New lower bounds for orthogonal graph drawings
    Biedl, TC
    GRAPH DRAWING, 1996, 1027 : 28 - 39
  • [29] Orthogonal drawings based on the stratification of planar graphs
    Bonichon, N
    Le Saëc, B
    Mosbah, M
    DISCRETE MATHEMATICS, 2004, 276 (1-3) : 43 - 57
  • [30] Efficient Orthogonal Drawings of High Degree Graphs
    A. Papakostas
    I. G. Tollis
    Algorithmica, 2000, 26 : 100 - 125