Outer 1-Planar Graphs

被引:0
|
作者
Christopher Auer
Christian Bachmaier
Franz J. Brandenburg
Andreas Gleißner
Kathrin Hanauer
Daniel Neuwirth
Josef Reislhuber
机构
[1] University of Passau,
来源
Algorithmica | 2016年 / 74卷
关键词
Planar and outerplanar graphs; 1-Planarity; Embeddings and drawings; Graph parameters; Density;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is outer 1-planar (o1p) if it can be drawn in the plane such that all vertices are in the outer face and each edge is crossed at most once. o1p graphs generalize outerplanar graphs, which can be recognized in linear time, and specialize 1-planar graphs, whose recognition is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NP}$$\end{document}-hard. We explore o1p graphs. Our first main result is a linear-time algorithm that takes a graph as input and returns a positive or a negative witness for o1p. If a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is o1p, then the algorithm computes an embedding and can augment G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} to a maximal o1p graph. Otherwise, G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} includes one of six minors, which is detected by the recognition algorithm. Secondly, we establish structural properties of o1p graphs. o1p graphs are planar and are subgraphs of planar graphs with a Hamiltonian cycle. They are neither closed under edge contraction nor under subdivision. Several important graph parameters, such as treewidth, colorability, stack number, and queue number, increase by one from outerplanar to o1p graphs. Every o1p graph of size n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} has at most 52n-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{2} n - 4$$\end{document} edges and there are maximal o1p graphs with 115n-185\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{11}{5} n - \frac{18}{5}$$\end{document} edges, and these bounds are tight. Finally, every o1p graph has a straight-line grid drawing in O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(n^2)$$\end{document} area with all vertices in the outer face, a planar visibility representation in O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(n \log n)$$\end{document} area, and a 3D straight-line drawing in linear volume, and these drawings can be constructed in linear time.
引用
收藏
页码:1293 / 1320
页数:27
相关论文
共 50 条
  • [41] The Matching Extendability of Optimal 1-Planar Graphs
    Fujisawa, Jun
    Segawa, Keita
    Suzuki, Yusuke
    GRAPHS AND COMBINATORICS, 2018, 34 (05) : 1089 - 1099
  • [42] A note on total colorings of 1-planar graphs
    Czap, Julius
    INFORMATION PROCESSING LETTERS, 2013, 113 (14-16) : 516 - 517
  • [43] Improvements on the density of maximal 1-planar graphs
    Barat, Janos
    Toth, Geza
    JOURNAL OF GRAPH THEORY, 2018, 88 (01) : 101 - 109
  • [44] Dynamic list coloring of 1-planar graphs
    Zhang, Xin
    Li, Yan
    DISCRETE MATHEMATICS, 2021, 344 (05)
  • [45] The Matching Extendability of Optimal 1-Planar Graphs
    Jun Fujisawa
    Keita Segawa
    Yusuke Suzuki
    Graphs and Combinatorics, 2018, 34 : 1089 - 1099
  • [46] The Book Thickness of 1-Planar Graphs is Constant
    Michael A. Bekos
    Till Bruckdorfer
    Michael Kaufmann
    Chrysanthi N. Raftopoulou
    Algorithmica, 2017, 79 : 444 - 465
  • [47] Star Chromatic Index of 1-Planar Graphs
    Wang, Yiqiao
    Liu, Juan
    Shi, Yongtang
    Wang, Weifan
    SYMMETRY-BASEL, 2022, 14 (06):
  • [48] A note on odd colorings of 1-planar graphs
    Cranston, Daniel W.
    Lafferty, Michael
    Song, Zi-Xia
    DISCRETE APPLIED MATHEMATICS, 2023, 330 : 112 - 117
  • [49] Note on improper coloring of 1-planar graphs
    Yanan Chu
    Lei Sun
    Jun Yue
    Czechoslovak Mathematical Journal, 2019, 69 : 955 - 968
  • [50] NOTE ON IMPROPER COLORING OF 1-PLANAR GRAPHS
    Chu, Yanan
    Sun, Lei
    Yue, Jun
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (04) : 955 - 968