Outer 1-Planar Graphs

被引:0
|
作者
Christopher Auer
Christian Bachmaier
Franz J. Brandenburg
Andreas Gleißner
Kathrin Hanauer
Daniel Neuwirth
Josef Reislhuber
机构
[1] University of Passau,
来源
Algorithmica | 2016年 / 74卷
关键词
Planar and outerplanar graphs; 1-Planarity; Embeddings and drawings; Graph parameters; Density;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is outer 1-planar (o1p) if it can be drawn in the plane such that all vertices are in the outer face and each edge is crossed at most once. o1p graphs generalize outerplanar graphs, which can be recognized in linear time, and specialize 1-planar graphs, whose recognition is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NP}$$\end{document}-hard. We explore o1p graphs. Our first main result is a linear-time algorithm that takes a graph as input and returns a positive or a negative witness for o1p. If a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is o1p, then the algorithm computes an embedding and can augment G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} to a maximal o1p graph. Otherwise, G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} includes one of six minors, which is detected by the recognition algorithm. Secondly, we establish structural properties of o1p graphs. o1p graphs are planar and are subgraphs of planar graphs with a Hamiltonian cycle. They are neither closed under edge contraction nor under subdivision. Several important graph parameters, such as treewidth, colorability, stack number, and queue number, increase by one from outerplanar to o1p graphs. Every o1p graph of size n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} has at most 52n-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{2} n - 4$$\end{document} edges and there are maximal o1p graphs with 115n-185\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{11}{5} n - \frac{18}{5}$$\end{document} edges, and these bounds are tight. Finally, every o1p graph has a straight-line grid drawing in O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(n^2)$$\end{document} area with all vertices in the outer face, a planar visibility representation in O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(n \log n)$$\end{document} area, and a 3D straight-line drawing in linear volume, and these drawings can be constructed in linear time.
引用
收藏
页码:1293 / 1320
页数:27
相关论文
共 50 条
  • [21] On edge colorings of 1-planar graphs
    Zhang, Xin
    Wu, Jian-Liang
    INFORMATION PROCESSING LETTERS, 2011, 111 (03) : 124 - 128
  • [22] Counting cliques in 1-planar graphs
    Gollin, J. Pascal
    Hendrey, Kevin
    Methuku, Abhishek
    Tompkins, Casey
    Zhang, Xin
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 109
  • [23] LINEAR ARBORICITY OF 1-PLANAR GRAPHS
    Wang, Weifan
    Liu, Juan
    Wang, Yiqiao
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (02) : 435 - 457
  • [24] Remarks on the joins of 1-planar graphs
    Ouyang, Zhangdong
    Ge, Jun
    Chen, Yichao
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
  • [25] The Stub Resolution of 1-Planar Graphs
    Kaufmann, Michael
    Kratochvil, Jan
    Lipp, Fabian
    Montecchiani, Fabrizio
    Raftopoulou, Chrysanthi
    Valtr, Pavel
    WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2020), 2020, 12049 : 170 - 182
  • [26] On total colorings of 1-planar graphs
    Xin Zhang
    Jianfeng Hou
    Guizhen Liu
    Journal of Combinatorial Optimization, 2015, 30 : 160 - 173
  • [27] Packing trees into 1-planar graphs
    De Luca F.
    Di Giacomo E.
    Hong S.-H.
    Kobourov S.
    Lenhart W.
    Liotta G.
    Meijer H.
    Tappini A.
    Wismath S.
    Journal of Graph Algorithms and Applications, 2021, 25 (02) : 605 - 624
  • [28] Packing Trees into 1-Planar Graphs
    De Luca, Felice
    Di Giacomo, Emilio
    Hong, Seok-Hee
    Kobourov, Stephen
    Lenhart, William
    Liotta, Giuseppe
    Meijer, Henk
    Tappini, Alessandra
    Wismath, Stephen
    WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2020), 2020, 12049 : 81 - 93
  • [29] On RAC drawings of 1-planar graphs
    Bekos, Michael A.
    Didimo, Walter
    Liotta, Giuseppe
    Mehrabi, Saeed
    Montecchiani, Fabrizio
    THEORETICAL COMPUTER SCIENCE, 2017, 689 : 48 - 57
  • [30] On drawings and decompositions of 1-planar graphs
    Czap, Julius
    Hudak, David
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (02):