Quasilinear Interpolation by Minimal Splines

被引:0
|
作者
Livshits L.P. [1 ]
Makarov A.A. [1 ,2 ]
Makarova S.V. [1 ]
机构
[1] St. Petersburg State University, St. Petersburg
[2] St. Petersburg State Electrotechnical University “LETI”, St. Petersburg
关键词
D O I
10.1007/s10958-024-07101-4
中图分类号
学科分类号
摘要
The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the grid stepsize are established. Results of numerical experiments on approximating some test functions, which demonstrate the effect of choosing a generating vector function in constructing the corresponding minimal spline, are presented. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
引用
收藏
页码:285 / 296
页数:11
相关论文
共 50 条
  • [31] Chebyshevian splines: interpolation and blossoms
    Kayumov, Alexander
    Mazure, Marie-Laurence
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (01) : 65 - 70
  • [32] CONVERGENCE OF CUBIC INTERPOLATION SPLINES
    SCHMIDT, JW
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (02): : 109 - 110
  • [33] INTERPOLATION BY ALMOST QUARTIC SPLINES
    SAXENA, A
    ACTA MATHEMATICA HUNGARICA, 1988, 51 (3-4) : 283 - 292
  • [34] Convergence of quartic interpolation splines
    Volkov, Yu. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (02): : 67 - 74
  • [35] EXTREMAL FUNCTIONAL INTERPOLATION AND SPLINES
    SUBBOTIN, YN
    DOKLADY AKADEMII NAUK SSSR, 1974, 214 (01): : 56 - 58
  • [36] INTERPOLATION BY CERTAIN QUINTIC SPLINES
    SPATH, H
    COMPUTER JOURNAL, 1969, 12 (03): : 292 - &
  • [37] Extremal function interpolation and splines
    Subbotin, Yurii Nikolaevich
    Novikov, Sergey Igorevich
    Shevaldin, Valerii Trifonovich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (03): : 200 - 225
  • [38] The poisedness of interpolation problem for splines
    Wang, RH
    Wang, JX
    APPLIED NUMERICAL MATHEMATICS, 2005, 54 (01) : 95 - 103
  • [39] INTERPOLATION BY CUBIC-SPLINES
    BLEYER, A
    SALLAM, SMM
    PERIODICA POLYTECHNICA-ELECTRICAL ENGINEERING, 1978, 22 (2-3): : 91 - 105
  • [40] Construction of Hyperbolic Interpolation Splines
    Kvasov, B. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (04) : 539 - 548