Construction of Hyperbolic Interpolation Splines

被引:3
|
作者
Kvasov, B. I. [1 ]
机构
[1] Russian Acad Sci, Inst Computat Technol, Siberian Branch, Novosibirsk 630090, Russia
关键词
shape-preserving interpolation; differential multipoint boundary value problem; grid method; discrete hyperbolic spline; parallelization of tridiagonal Gaussian elimination;
D O I
10.1134/S0965542508040039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of constructing a hyperbolic interpolation spline can be formulated as a differential multipoint boundary value problem. Its discretization yields a linear system with a five-diagonal matrix, which may be ill-conditioned for unequally spaced data. It is shown that this system can be split into diagonally dominant tridiagonal systems, which are solved without computing hyperbolic functions and admit effective parallelization.
引用
收藏
页码:539 / 548
页数:10
相关论文
共 50 条
  • [1] Construction of hyperbolic interpolation splines
    B. I. Kvasov
    Computational Mathematics and Mathematical Physics, 2008, 48 : 539 - 548
  • [2] Construction of blending surfaces by parametric discrete interpolation PDE splines
    Pasadas, A.
    Rodriguez, M. L.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 77 (2-3) : 282 - 290
  • [3] ON HYPERBOLIC SPLINES
    SCHUMAKER, LL
    JOURNAL OF APPROXIMATION THEORY, 1983, 38 (02) : 144 - 166
  • [4] Static term structure of interest rate construction with tension interpolation splines
    Qin, Xiangbin
    Zhu, Yuanpeng
    AIMS MATHEMATICS, 2024, 9 (01): : 240 - 256
  • [5] LACUNARY INTERPOLATION BY SPLINES
    MEIR, A
    SHARMA, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (03) : 433 - 442
  • [6] INTERPOLATION BY MULTIVARIATE SPLINES
    CHUI, CK
    DIAMOND, H
    RAPHAEL, LA
    MATHEMATICS OF COMPUTATION, 1988, 51 (183) : 203 - 218
  • [7] Lacunary Interpolation by Splines(Ⅱ)
    郭竹瑞
    叶懋冬
    数学研究与评论, 1987, (01) : 87 - 96
  • [8] INTERPOLATION BY BILINEAR SPLINES
    VAKARCHUK, SB
    MATHEMATICAL NOTES, 1990, 47 (5-6) : 441 - 444
  • [9] On Approximation by Hyperbolic Splines
    Kulikov E.K.
    Makarov A.A.
    Journal of Mathematical Sciences, 2019, 240 (6) : 822 - 832
  • [10] Interpolation by splines on triangulations
    Davydov, O
    Nürnberger, G
    Zeilfelder, F
    NEW DEVELOPMENTS IN APPROXIMATION THEORY, 1999, 132 : 49 - 70