Construction of Hyperbolic Interpolation Splines

被引:3
|
作者
Kvasov, B. I. [1 ]
机构
[1] Russian Acad Sci, Inst Computat Technol, Siberian Branch, Novosibirsk 630090, Russia
关键词
shape-preserving interpolation; differential multipoint boundary value problem; grid method; discrete hyperbolic spline; parallelization of tridiagonal Gaussian elimination;
D O I
10.1134/S0965542508040039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of constructing a hyperbolic interpolation spline can be formulated as a differential multipoint boundary value problem. Its discretization yields a linear system with a five-diagonal matrix, which may be ill-conditioned for unequally spaced data. It is shown that this system can be split into diagonally dominant tridiagonal systems, which are solved without computing hyperbolic functions and admit effective parallelization.
引用
收藏
页码:539 / 548
页数:10
相关论文
共 50 条
  • [32] Hyperbolic splines and nonlinear distortion
    Martin, R
    Lever, K
    McCarthy, J
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (06) : 1825 - 1828
  • [33] Parametric splines on a hyperbolic paraboloid
    Peng, Fengfu
    Han, Xuli
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 183 - 191
  • [34] Chebyshevian splines: interpolation and blossoms
    Kayumov, Alexander
    Mazure, Marie-Laurence
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (01) : 65 - 70
  • [35] Quasilinear Interpolation by Minimal Splines
    Livshits L.P.
    Makarov A.A.
    Makarova S.V.
    Journal of Mathematical Sciences, 2024, 281 (2) : 285 - 296
  • [36] CONVERGENCE OF CUBIC INTERPOLATION SPLINES
    SCHMIDT, JW
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (02): : 109 - 110
  • [37] INTERPOLATION BY ALMOST QUARTIC SPLINES
    SAXENA, A
    ACTA MATHEMATICA HUNGARICA, 1988, 51 (3-4) : 283 - 292
  • [38] Convergence of quartic interpolation splines
    Volkov, Yu. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (02): : 67 - 74
  • [39] EXTREMAL FUNCTIONAL INTERPOLATION AND SPLINES
    SUBBOTIN, YN
    DOKLADY AKADEMII NAUK SSSR, 1974, 214 (01): : 56 - 58
  • [40] INTERPOLATION BY CERTAIN QUINTIC SPLINES
    SPATH, H
    COMPUTER JOURNAL, 1969, 12 (03): : 292 - &