Construction of Hyperbolic Interpolation Splines

被引:3
|
作者
Kvasov, B. I. [1 ]
机构
[1] Russian Acad Sci, Inst Computat Technol, Siberian Branch, Novosibirsk 630090, Russia
关键词
shape-preserving interpolation; differential multipoint boundary value problem; grid method; discrete hyperbolic spline; parallelization of tridiagonal Gaussian elimination;
D O I
10.1134/S0965542508040039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of constructing a hyperbolic interpolation spline can be formulated as a differential multipoint boundary value problem. Its discretization yields a linear system with a five-diagonal matrix, which may be ill-conditioned for unequally spaced data. It is shown that this system can be split into diagonally dominant tridiagonal systems, which are solved without computing hyperbolic functions and admit effective parallelization.
引用
收藏
页码:539 / 548
页数:10
相关论文
共 50 条
  • [41] Extremal function interpolation and splines
    Subbotin, Yurii Nikolaevich
    Novikov, Sergey Igorevich
    Shevaldin, Valerii Trifonovich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (03): : 200 - 225
  • [42] The poisedness of interpolation problem for splines
    Wang, RH
    Wang, JX
    APPLIED NUMERICAL MATHEMATICS, 2005, 54 (01) : 95 - 103
  • [43] INTERPOLATION BY CUBIC-SPLINES
    BLEYER, A
    SALLAM, SMM
    PERIODICA POLYTECHNICA-ELECTRICAL ENGINEERING, 1978, 22 (2-3): : 91 - 105
  • [44] On discrete hyperbolic tension splines
    Paolo Costantini
    Boris I. Kvasov
    Carla Manni
    Advances in Computational Mathematics, 1999, 11 : 331 - 354
  • [45] On discrete hyperbolic tension splines
    Costantini, P
    Kvasov, BI
    Manni, C
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (04) : 331 - 354
  • [46] LACUNARY INTERPOLATION BY QUINTIC SPLINES
    PRASAD, J
    VARMA, AK
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (06) : 1075 - 1079
  • [47] INTERPOLATION BY MULTIDIMENSIONAL PERIODIC SPLINES
    FREEDEN, W
    JOURNAL OF APPROXIMATION THEORY, 1988, 55 (01) : 104 - 117
  • [48] Isogeometric interpolation by generalized splines
    Kvasov, BI
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1996, 11 (03) : 223 - 246
  • [49] CARDINAL INTERPOLATION BY MULTIVARIATE SPLINES
    CHUI, CK
    JETTER, K
    WARD, JD
    MATHEMATICS OF COMPUTATION, 1987, 48 (178) : 711 - 724
  • [50] MULTIVARIATE SPLINES AND POLYNOMIAL INTERPOLATION
    AKOPYAN, AA
    SAAKYAN, AA
    RUSSIAN MATHEMATICAL SURVEYS, 1993, 48 (05) : 1 - 72