On products of noncommutative symmetric quasi Banach spaces and applications

被引:0
|
作者
Turdebek N. Bekjan
Myrzagali N. Ospanov
机构
[1] Xinjiang University,College of Mathematics and Systems Science
[2] L. N. Gumilyov Eurasian National University,Faculty of Mechanics and Mathematics
来源
Positivity | 2021年 / 25卷
关键词
Symmetric quasi Banach function space; Pointwise product of symmetric quasi Banach function spaces; Noncommutative symmetric quasi Banach space; Noncommutative symmetric quasi Hardy space; Complex and real interpolation; 46L52; 47L51;
D O I
暂无
中图分类号
学科分类号
摘要
Let E1,E2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1,\;E_2$$\end{document} be symmetric quasi Banach function spaces on (0,α)(0<α≤∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\alpha )\;(0<\alpha \le \infty )$$\end{document}. We study some properties of several constructions (the products E1(M)⊙E2(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1({\mathcal {M}})\odot E_2({\mathcal {M}})$$\end{document}, the Calderón spaces E1(M)θE2(M)1-θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1({\mathcal {M}})^\theta E_2({\mathcal {M}})^{1-\theta }$$\end{document}, the complex interpolation spaces (E1(M),E2(M))θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E_1({\mathcal {M}}),E_2({\mathcal {M}}))_\theta $$\end{document}, the real interpolation method (E1(M),E2(M))θ,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E_1({\mathcal {M}}),E_2({\mathcal {M}}))_{\theta ,p}$$\end{document}) in the context of noncommutative symmetric quasi Banach spaces. Under some natural assumptions, we prove (E1(M),E2(M))θ=E1(M)θE2(M)1-θ=E11θ(M)⊙E211-θ(M)(0<θ<1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (E_1({\mathcal {M}}), E_2({\mathcal {M}}))_\theta =E_1({\mathcal {M}})^\theta E_2({\mathcal {M}})^{1-\theta }=E_1^{\left( \frac{1}{\theta }\right) }({\mathcal {M}})\odot E_2^{\left( \frac{1}{1-\theta }\right) }({\mathcal {M}})\;(0<\theta <1). \end{aligned}$$\end{document}As application, we extend these result to the noncommutative symmetric quasi Hardy spaces case. We also obtained the real case of Peter Jones’ theorem for noncommutative symmetric quasi Hardy spaces.
引用
收藏
页码:121 / 148
页数:27
相关论文
共 50 条
  • [41] Best proximity points in noncommutative Banach spaces
    Beg, Ismat
    Bartwal, Ayush
    Rawat, Shivam
    Dimri, R. C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (01):
  • [42] Best proximity points in noncommutative Banach spaces
    Ismat Beg
    Ayush Bartwal
    Shivam Rawat
    R. C. Dimri
    Computational and Applied Mathematics, 2022, 41
  • [43] On Haagerup noncommutative quasi Hp(A) spaces
    Bekjan, Turdebek N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [44] UNIQUENESS OF UNCONDITIONAL BASES IN QUASI-BANACH SPACES WITH APPLICATIONS TO HARDY-SPACES
    KALTON, NJ
    LERANOZ, C
    WOJTASZCZYK, P
    ISRAEL JOURNAL OF MATHEMATICS, 1990, 72 (03) : 299 - 311
  • [45] Uniqueness of unconditional bases in quasi-banach spaces with applications to hardy spaces, II
    P. Wojtaszczyk
    Israel Journal of Mathematics, 1997, 97 : 253 - 280
  • [46] Anisotropic Hardy spaces associated with ball quasi-Banach function spaces and their applications
    Wang, Zhiran
    Yan, Xianjie
    Yang, Dachun
    KYOTO JOURNAL OF MATHEMATICS, 2024, 64 (03) : 565 - 634
  • [47] Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    DISCRETE MATHEMATICS, 2010, 310 (24) : 3584 - 3606
  • [48] A generalization of quasi-symmetric functions and noncommutative symmetric functions
    Duchamp, G
    Hivert, F
    Thibon, JY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1113 - 1116
  • [49] A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions
    Jean-Christophe Novelli
    Jean-Yves Thibon
    Frédéric Toumazet
    Annals of Combinatorics, 2020, 24 : 557 - 576
  • [50] A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    Toumazet, Frederic
    ANNALS OF COMBINATORICS, 2020, 24 (03) : 557 - 576