On products of noncommutative symmetric quasi Banach spaces and applications

被引:0
|
作者
Turdebek N. Bekjan
Myrzagali N. Ospanov
机构
[1] Xinjiang University,College of Mathematics and Systems Science
[2] L. N. Gumilyov Eurasian National University,Faculty of Mechanics and Mathematics
来源
Positivity | 2021年 / 25卷
关键词
Symmetric quasi Banach function space; Pointwise product of symmetric quasi Banach function spaces; Noncommutative symmetric quasi Banach space; Noncommutative symmetric quasi Hardy space; Complex and real interpolation; 46L52; 47L51;
D O I
暂无
中图分类号
学科分类号
摘要
Let E1,E2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1,\;E_2$$\end{document} be symmetric quasi Banach function spaces on (0,α)(0<α≤∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\alpha )\;(0<\alpha \le \infty )$$\end{document}. We study some properties of several constructions (the products E1(M)⊙E2(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1({\mathcal {M}})\odot E_2({\mathcal {M}})$$\end{document}, the Calderón spaces E1(M)θE2(M)1-θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1({\mathcal {M}})^\theta E_2({\mathcal {M}})^{1-\theta }$$\end{document}, the complex interpolation spaces (E1(M),E2(M))θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E_1({\mathcal {M}}),E_2({\mathcal {M}}))_\theta $$\end{document}, the real interpolation method (E1(M),E2(M))θ,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E_1({\mathcal {M}}),E_2({\mathcal {M}}))_{\theta ,p}$$\end{document}) in the context of noncommutative symmetric quasi Banach spaces. Under some natural assumptions, we prove (E1(M),E2(M))θ=E1(M)θE2(M)1-θ=E11θ(M)⊙E211-θ(M)(0<θ<1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (E_1({\mathcal {M}}), E_2({\mathcal {M}}))_\theta =E_1({\mathcal {M}})^\theta E_2({\mathcal {M}})^{1-\theta }=E_1^{\left( \frac{1}{\theta }\right) }({\mathcal {M}})\odot E_2^{\left( \frac{1}{1-\theta }\right) }({\mathcal {M}})\;(0<\theta <1). \end{aligned}$$\end{document}As application, we extend these result to the noncommutative symmetric quasi Hardy spaces case. We also obtained the real case of Peter Jones’ theorem for noncommutative symmetric quasi Hardy spaces.
引用
收藏
页码:121 / 148
页数:27
相关论文
共 50 条
  • [31] On interpolation of noncommutative symmetric Hardy spaces
    Turdebek N. Bekjan
    Manat Mustafa
    Positivity, 2017, 21 : 1307 - 1317
  • [32] Rademacher averages on noncommutative symmetric spaces
    Le Merdy, Christian
    Sukochev, Fedor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (12) : 3329 - 3355
  • [33] On interpolation of noncommutative symmetric Hardy spaces
    Bekjan, Turdebek N.
    Mustafa, Manat
    POSITIVITY, 2017, 21 (04) : 1307 - 1317
  • [34] Rosenthal inequalities in noncommutative symmetric spaces
    Dirksen, Sjoerd
    de Pagter, Ben
    Potapov, Denis
    Sukochev, Fedor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (10) : 2890 - 2925
  • [35] Symmetric polynomials on Banach spaces
    Chernega, I. V.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2009, 1 (02) : 214 - 233
  • [36] Rosenthal's inequalities: Δ-norms and quasi-Banach symmetric sequence spaces
    Jiao, Yong
    Sukochev, Fedor
    Xie, Guangheng
    Zanin, Dmitriy
    STUDIA MATHEMATICA, 2020, 255 (01) : 55 - 81
  • [37] Martingale inequalities in noncommutative symmetric spaces
    Yong Jiao
    Archiv der Mathematik, 2012, 98 : 87 - 97
  • [38] Noncommutative products of Euclidean spaces
    Dubois-Violette, Michel
    Landi, Giovanni
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (11) : 2491 - 2513
  • [39] Noncommutative products of Euclidean spaces
    Michel Dubois-Violette
    Giovanni Landi
    Letters in Mathematical Physics, 2018, 108 : 2491 - 2513
  • [40] On asymptotically symmetric Banach spaces
    Junge, M.
    Kutzarova, D.
    Odell, E.
    STUDIA MATHEMATICA, 2006, 173 (03) : 203 - 231