Degree Sequence Conditions for Maximally Edge-Connected and Super Edge-Connected Hypergraphs

被引:0
|
作者
Shuang Zhao
Yingzhi Tian
Jixiang Meng
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Degree sequence; Edge-connectivity; Hypergraph; Maximally edge-connected; Super edge-connected;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a connected hypergraph with minimum degree δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document} and edge-connectivity λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}. The hypergraph H is maximally edge-connected if λ=δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda = \delta$$\end{document}, and it is super edge-connected or super-λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}, if every minimum edge-cut consists of edges incident with some vertex. There are several degree sequence conditions, for example, Goldsmith and White (Discrete Math 23: 31–36, 1978) and Bollobás (Discrete Math 28:321–323, 1979) etc. for maximally edge-connected graphs and super-λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} graphs. In this paper, we generalize these and some other degree sequence conditions to uniform hypergraphs.
引用
收藏
页码:1065 / 1078
页数:13
相关论文
共 50 条
  • [41] Maximally edge-connected graphs and Zeroth-order general RandiA‡ index for
    Su, Guifu
    Xiong, Liming
    Su, Xiaofeng
    Li, Guojun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) : 182 - 195
  • [42] Sufficient conditions for optimally and super m-restricted edge-connected graphs with given girth
    Liu, Saihua
    Ouyang, Chen
    Ou, Jianping
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06): : 1146 - 1158
  • [43] The minimum restricted edge-connected graph and the minimum size of graphs with a given edge-degree
    Yang, Weihua
    Tian, Yingzhi
    Li, Hengzhe
    Li, Hao
    Guo, Xiaofeng
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 304 - 309
  • [44] Ore type sufficient condition for a graph to be super restricted edge-connected
    Wang, Ying-Qian
    Li, Qiao
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2001, 35 (08): : 1253 - 1255
  • [45] Highly edge-connected detachments of graphs and digraphs
    Berg, AR
    Jackson, B
    Jordán, T
    JOURNAL OF GRAPH THEORY, 2003, 43 (01) : 67 - 77
  • [46] The immersion-minimal infinitely edge-connected graph
    Knappe, Paul
    Kurkofka, Jan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 164 : 492 - 516
  • [47] Sufficient conditions for triangle-free graphs to be super k-restricted edge-connected
    Yuan, Jun
    Liu, Aixia
    INFORMATION PROCESSING LETTERS, 2016, 116 (02) : 163 - 167
  • [48] CRITICAL N-FOLD EDGE-CONNECTED GRAPHS
    MADER, W
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 40 (02) : 152 - 158
  • [49] Sufficient conditions for triangle-free graphs to be optimally restricted edge-connected
    Meierling, Dirk
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (12) : 1775 - 1781
  • [50] Degree conditions for graphs to be maximally k-restricted edge connected and super k-restricted edge connected
    Wang, Shiying
    Zhao, Nana
    DISCRETE APPLIED MATHEMATICS, 2015, 184 : 258 - 263