Degree Sequence Conditions for Maximally Edge-Connected and Super Edge-Connected Hypergraphs

被引:0
|
作者
Shuang Zhao
Yingzhi Tian
Jixiang Meng
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Degree sequence; Edge-connectivity; Hypergraph; Maximally edge-connected; Super edge-connected;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a connected hypergraph with minimum degree δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document} and edge-connectivity λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}. The hypergraph H is maximally edge-connected if λ=δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda = \delta$$\end{document}, and it is super edge-connected or super-λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}, if every minimum edge-cut consists of edges incident with some vertex. There are several degree sequence conditions, for example, Goldsmith and White (Discrete Math 23: 31–36, 1978) and Bollobás (Discrete Math 28:321–323, 1979) etc. for maximally edge-connected graphs and super-λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} graphs. In this paper, we generalize these and some other degree sequence conditions to uniform hypergraphs.
引用
收藏
页码:1065 / 1078
页数:13
相关论文
共 50 条
  • [31] On the existence of super edge-connected graphs with prescribed degrees
    Tian, Yingzhi
    Meng, Jixiang
    Lai, Hongjian
    Zhang, Zhao
    DISCRETE MATHEMATICS, 2014, 328 : 36 - 41
  • [32] Super-cyclically edge-connected regular graphs
    Jin-Xin Zhou
    Yan-Quan Feng
    Journal of Combinatorial Optimization, 2013, 26 : 393 - 411
  • [33] On forcibly k-edge-connected and forcibly super edge-connected uniform hypergraphic sequences
    Liu, Xuemei
    Meng, Jixiang
    Tian, Yingzhi
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (14): : 15980 - 15996
  • [34] On forcibly k-edge-connected and forcibly super edge-connected uniform hypergraphic sequences
    Xuemei Liu
    Jixiang Meng
    Yingzhi Tian
    The Journal of Supercomputing, 2023, 79 : 15980 - 15996
  • [35] The constructive characterization of (κ,a"")-edge-connected digraphs
    Kovacs, Erika R.
    Vegh, Laszlo A.
    COMBINATORICA, 2011, 31 (02) : 201 - 223
  • [36] Equitable factorizations of edge-connected graphs
    Hasanvand, Morteza
    DISCRETE APPLIED MATHEMATICS, 2022, 317 : 136 - 145
  • [37] The constructive characterization of (κ,ℓ)-edge-connected digraphs
    Erika R. Kovács
    László A. Végh
    Combinatorica, 2011, 31 : 201 - 223
  • [38] Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected graphs
    Chen, Zhibing
    Su, Guifu
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2017, 218 : 64 - 70
  • [39] Maximally edge-connected realizations and Kundu's k $k$-factor theorem
    Shook, James M. M.
    JOURNAL OF GRAPH THEORY, 2024, 105 (01) : 83 - 97
  • [40] Minimally (k, k)-edge-connected graphs
    Hennayake, K
    Lai, HJ
    Li, DY
    Ma, JZ
    JOURNAL OF GRAPH THEORY, 2003, 44 (02) : 116 - 131