Kinetics of nitrous oxide (N2O) formation and reduction by Paracoccus pantotrophus

被引:0
|
作者
B. L. Read-Daily
F. Sabba
J. P. Pavissich
R. Nerenberg
机构
[1] Elizabethtown College,Department of Engineering and Physics
[2] University of Notre Dame,Department of Civil Engineering and Environmental Engineering and Earth Sciences
[3] Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias
来源
AMB Express | / 6卷
关键词
Nitrous oxide; Denitrification; Maximum specific reduction rates; Kinetics;
D O I
暂无
中图分类号
学科分类号
摘要
Nitrous oxide (N2O) is a powerful greenhouse gas emitted from wastewater treatment, as well as natural systems, as a result of biological nitrification and denitrification. While denitrifying bacteria can be a significant source of N2O, they can also reduce N2O to N2. More information on the kinetics of N2O formation and reduction by denitrifying bacteria is needed to predict and quantify their impact on N2O emissions. In this study, kinetic parameters were determined for Paracoccus pantotrophus, a common denitrifying bacterium. Parameters included the maximum specific reduction rates, q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document}, growth rates, μ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}$$\end{document}, and yields, Y, for reduction of NO3− (nitrate) to nitrite (NO2−), NO2− to N2O, and N2O to N2, with acetate as the electron donor. The q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document} values were 2.9 gN gCOD−1 d−1 for NO3− to NO2−, 1.4 gN gCOD−1 d−1 for NO2− to N2O, and 5.3 gN gCOD−1 d−1 for N2O to N2. The μ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}$$\end{document} values were 2.7, 0.93, and 1.5 d−1, respectively. When N2O and NO3− were added concurrently, the apparent (extant) kinetics, q^app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}_{\text{app}}$$\end{document}, assuming reduction to N2, were 6.3 gCOD gCOD−1 d−1, compared to 5.4 gCOD gCOD−1 d−1 for NO3− as the sole added acceptor. The μ^app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}_{\text{app}}$$\end{document} was 1.6 d−1, compared to 2.5 d−1 for NO3− alone. These results suggest that NO3− and N2O were reduced concurrently. Based on this research, denitrifying bacteria like P. pantotrophus may serve as a significant sink for N2O. With careful design and operation, treatment plants can use denitrifying bacteria to minimize N2O emissions.
引用
收藏
相关论文
共 50 条
  • [31] Role of N2O and equivalence ratio on NOx formation of methane/nitrous oxide premixed flames
    Chen, Chun-Han
    Li, Yueh-Heng
    COMBUSTION AND FLAME, 2021, 223 : 42 - 54
  • [32] Investigating the mechanism for the formation of nitrous oxide [N2O(X1Σ+)] in extraterrestrial ices
    Jamieson, CS
    Bennett, CJ
    Mebel, AM
    Kaiser, RI
    ASTROPHYSICAL JOURNAL, 2005, 624 (01): : 436 - 447
  • [33] Multiple forms of the catalytic centre, Cuz, in the enzyme nitrous oxide reductase from Paracoccus pantotrophus
    Rasmussen, T
    Berks, BC
    Butt, JN
    Thomson, AJ
    BIOCHEMICAL JOURNAL, 2002, 364 : 807 - 815
  • [34] Crystallization and preliminary X-ray analysis of nitrous oxide reductase from Paracoccus pantotrophus
    Jafferji, A
    Sami, M
    Nuttall, J
    Ferguson, SJ
    Berks, BC
    Fülöp, V
    ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2000, 56 : 653 - 655
  • [35] Emissions of nitrous acid (HONO), nitric oxide (NO), and nitrous oxide (N2O) from horse dung
    Maljanen, Marja
    Gondal, Zafar
    Bhattarai, Hem Raj
    AGRICULTURAL AND FOOD SCIENCE, 2016, 25 (04) : 225 - 229
  • [36] Effect of ρ(COD)/ρ(N) on nitrous oxide (N2O) production in biological denitrification
    Wang, Shu-Ying
    Wang, Sai
    Gong, You-Kui
    Beijing Gongye Daxue Xuebao/Journal of Beijing University of Technology, 2012, 38 (06): : 898 - 903
  • [37] Inhibition by free nitrous acid (FNA) and the electron competition of nitrite in nitrous oxide (N2O) reduction during hydrogenotrophic denitrification
    Wang, Yajiao
    Li, Peng
    Zuo, Jiane
    Gong, Yutao
    Wang, Sike
    Shi, Xuchuan
    Zhang, Mengyu
    CHEMOSPHERE, 2018, 213 : 1 - 10
  • [38] Mechanism of N2O reduction by the μ4-S tetranuclear Cuz cluster of nitrous oxide reductase
    Gorelsky, Serge I.
    Ghosh, Somdatta
    Solomon, E. I.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [39] A Study of N2O Decomposition Rate Constant at High Temperature: Application to the Reduction of Nitrous Oxide by Hydrogen
    Javoy, S.
    Mevel, R.
    Paillard, C. E.
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2009, 41 (05) : 357 - 375
  • [40] Mechanism of N2O reduction by the μ4-S tetranuclear Cuz cluster of nitrous oxide reductase
    Gorelsky, SI
    Ghosh, S
    Solomon, EI
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (01) : 278 - 290