Kinetics of nitrous oxide (N2O) formation and reduction by Paracoccus pantotrophus

被引:0
|
作者
B. L. Read-Daily
F. Sabba
J. P. Pavissich
R. Nerenberg
机构
[1] Elizabethtown College,Department of Engineering and Physics
[2] University of Notre Dame,Department of Civil Engineering and Environmental Engineering and Earth Sciences
[3] Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias
来源
AMB Express | / 6卷
关键词
Nitrous oxide; Denitrification; Maximum specific reduction rates; Kinetics;
D O I
暂无
中图分类号
学科分类号
摘要
Nitrous oxide (N2O) is a powerful greenhouse gas emitted from wastewater treatment, as well as natural systems, as a result of biological nitrification and denitrification. While denitrifying bacteria can be a significant source of N2O, they can also reduce N2O to N2. More information on the kinetics of N2O formation and reduction by denitrifying bacteria is needed to predict and quantify their impact on N2O emissions. In this study, kinetic parameters were determined for Paracoccus pantotrophus, a common denitrifying bacterium. Parameters included the maximum specific reduction rates, q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document}, growth rates, μ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}$$\end{document}, and yields, Y, for reduction of NO3− (nitrate) to nitrite (NO2−), NO2− to N2O, and N2O to N2, with acetate as the electron donor. The q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document} values were 2.9 gN gCOD−1 d−1 for NO3− to NO2−, 1.4 gN gCOD−1 d−1 for NO2− to N2O, and 5.3 gN gCOD−1 d−1 for N2O to N2. The μ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}$$\end{document} values were 2.7, 0.93, and 1.5 d−1, respectively. When N2O and NO3− were added concurrently, the apparent (extant) kinetics, q^app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}_{\text{app}}$$\end{document}, assuming reduction to N2, were 6.3 gCOD gCOD−1 d−1, compared to 5.4 gCOD gCOD−1 d−1 for NO3− as the sole added acceptor. The μ^app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}_{\text{app}}$$\end{document} was 1.6 d−1, compared to 2.5 d−1 for NO3− alone. These results suggest that NO3− and N2O were reduced concurrently. Based on this research, denitrifying bacteria like P. pantotrophus may serve as a significant sink for N2O. With careful design and operation, treatment plants can use denitrifying bacteria to minimize N2O emissions.
引用
收藏
相关论文
共 50 条
  • [22] Direct electron transfer from pseudoazurin to nitrous oxide reductase in catalytic N2O reduction
    Fujita, Koyu
    Hirasawa-Fujita, Mika
    Brown, Doreen E.
    Obara, Yuji
    Ijima, Fumihiro
    Kohzuma, Takamitsu
    Dooley, David M.
    JOURNAL OF INORGANIC BIOCHEMISTRY, 2012, 115 : 163 - 173
  • [23] EMISSION OF NITROUS-OXIDE (N2O) FROM AGROECOSYSTEM
    MINAMI, K
    JARQ-JAPAN AGRICULTURAL RESEARCH QUARTERLY, 1987, 21 (01): : 22 - 27
  • [24] Sources and sinks of nitrous oxide (N2O) in deep lakes
    Mengis, M
    Gachter, R
    Wehrli, B
    BIOGEOCHEMISTRY, 1997, 38 (03) : 281 - 301
  • [25] The CuZ cluster of nitrous oxide reductase: Geometric and electronic structure and role in N2O reduction
    Ghosh, Somdatta
    Gorelsky, Serge I.
    Solomon, Edward I.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [26] Sources and sinks of nitrous oxide (N2O) in deep lakes
    MARTIN MENGIS
    RENÉ GÄCHTER
    BERNHARD WEHRLI
    Biogeochemistry, 1997, 38 : 281 - 301
  • [27] Progress in source strength estimates of nitrous oxide (N2O)
    Kroeze, C
    Mosier, A
    NON-C02 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL OPTIONS AND POLICY ASPECTS, 2002, : XXIX - XXXIII
  • [28] Nitrous Oxide (N2O) Emission from Aquaculture: A Review
    Hu, Zhen
    Lee, Jae Woo
    Chandran, Kartik
    Kim, Sungpyo
    Khanal, Samir Kumar
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (12) : 6470 - 6480
  • [29] NEUROPATHY FOLLOWING ABUSE OF NITROUS-OXIDE (N2O)
    LAYZER, RB
    FISHMAN, RA
    SCHAFER, JA
    NEUROLOGY, 1978, 28 (04) : 372 - 372
  • [30] RECONSIDERATION OF THE MECHANISMS OF NITROUS-OXIDE (N2O) TERATOGENICITY
    FUJINAGA, M
    MAZZE, RI
    BADEN, JM
    TERATOLOGY, 1988, 38 (02) : A18 - A18