Strong stability-preserving three-derivative Runge–Kutta methods

被引:0
|
作者
Xueyu Qin
Zhenhua Jiang
Jian Yu
Lintao Huang
Chao Yan
机构
[1] Beihang University,School of Aeronautic Science and Engineering
[2] China Aerospace Science and Technology Corporation,Laboratory of Aero
来源
关键词
Strong stability preserving; Runge–Kutta methods; Multiderivative methods; Order conditions; 65L06; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present the explicit strong stability-preserving (SSP) three-derivative Runge–Kutta (ThDRK) methods and propose the order accuracy conditions for ThDRK methods by Albrecht’s approach. Additionally, we develop the SSP theory based on the new Taylor series condition for the ThDRK methods and find its optimal SSP coefficient with the corresponding parameters. By comparing with two-derivative Runge–Kutta (TDRK) methods, Runge–Kutta (RK) methods and second derivative general linear methods (SGLMs), the theoretical and numerical results show that the ThDRK methods have the largest effective SSP coefficient for the order accuracy (3≤p≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\le p\le 5$$\end{document}). The numerical experiments reveal that the ThDRK methods maintain the designed order of convergence on the linear advection and Euler equation, and indicate the ThDRK methods have effective computational cost.
引用
收藏
相关论文
共 50 条
  • [31] Strong Stability Preserving Properties of Composition Runge–Kutta Schemes
    I. Higueras
    T. Roldán
    Journal of Scientific Computing, 2019, 80 : 784 - 807
  • [32] Strong stability for additive Runge-Kutta methods
    Higueras, Inmaculada
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1735 - 1758
  • [33] BOUNDEDNESS AND STRONG STABILITY OF RUNGE-KUTTA METHODS
    Hundsdorfer, W.
    Spijker, M. N.
    MATHEMATICS OF COMPUTATION, 2011, 80 (274) : 863 - 886
  • [34] Some Embedded Pairs for Optimal Implicit Strong Stability Preserving Runge-Kutta Methods
    Fekete, Imre
    Horvath, Akos
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2018, 2019, 30 : 359 - 364
  • [35] Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods
    Ethan J. Kubatko
    Benjamin A. Yeager
    David I. Ketcheson
    Journal of Scientific Computing, 2014, 60 : 313 - 344
  • [36] Strong Stability Preserving Integrating Factor Two-Step Runge-Kutta Methods
    Isherwood, Leah
    Grant, Zachary J.
    Gottlieb, Sigal
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 1446 - 1471
  • [37] Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order
    Sidafa Conde
    Sigal Gottlieb
    Zachary J. Grant
    John N. Shadid
    Journal of Scientific Computing, 2017, 73 : 667 - 690
  • [38] Strong Stability Preserving Properties of Composition Runge-Kutta Schemes
    Higueras, I
    Roldan, T.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (02) : 784 - 807
  • [39] HIGH ORDER STRONG STABILITY PRESERVING MULTIDERIVATIVE IMPLICIT AND IMEX RUNGE--KUTTA METHODS WITH ASYMPTOTIC PRESERVING PROPERTIES
    Gottlieb, Sigal
    Grant, Zachary J.
    Hu, Jingwei
    Shu, Ruiwen
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (01) : 423 - 449
  • [40] Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods for Linear Constant Coefficient Operators
    Sigal Gottlieb
    Lee-Ad J. Gottlieb
    Journal of Scientific Computing, 2003, 18 : 83 - 109