Zeroth-order single-loop algorithms for nonconvex-linear minimax problems

被引:0
|
作者
Jingjing Shen
Ziqi Wang
Zi Xu
机构
[1] Shanghai University,Department of Mathematics
来源
关键词
Nonconvex-linear minimax problem; Zeroth-order algorithm; Alternating randomized gradient projection algorithm; Alternating randomized proximal gradient algorithm; Complexity analysis; Machine learning; 90C47; 90C26; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
Nonconvex minimax problems have attracted significant interest in machine learning and many other fields in recent years. In this paper, we propose a new zeroth-order alternating randomized gradient projection algorithm to solve smooth nonconvex-linear problems and its iteration complexity to find an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-first-order Nash equilibrium is Oε-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( \varepsilon ^{-3} \right) $$\end{document} and the number of function value estimation per iteration is bounded by Odxε-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( d_{x}\varepsilon ^{-2} \right) $$\end{document}. Furthermore, we propose a zeroth-order alternating randomized proximal gradient algorithm for block-wise nonsmooth nonconvex-linear minimax problems and its corresponding iteration complexity is OK32ε-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( K^{\frac{3}{2}} \varepsilon ^{-3} \right) $$\end{document} and the number of function value estimation is bounded by Odxε-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( d_{x}\varepsilon ^{-2} \right) $$\end{document} per iteration. The numerical results indicate the efficiency of the proposed algorithms.
引用
收藏
页码:551 / 580
页数:29
相关论文
共 50 条
  • [41] An efficient algorithm for nonconvex-linear minimax optimization problem and its application in solving weighted maximin dispersion problem
    Weiwei Pan
    Jingjing Shen
    Zi Xu
    Computational Optimization and Applications, 2021, 78 : 287 - 306
  • [42] An efficient algorithm for nonconvex-linear minimax optimization problem and its application in solving weighted maximin dispersion problem
    Pan, Weiwei
    Shen, Jingjing
    Xu, Zi
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 78 (01) : 287 - 306
  • [44] PROXIMAL POINT ALGORITHMS FOR NONCONVEX-NONCONCAVE MINIMAX OPTIMIZATION PROBLEMS
    Li, Xiao-bing
    Jiang, Yuan-xin
    Yao, Bin
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (08) : 2007 - 2021
  • [45] Obtaining Lower Query Complexities Through Lightweight Zeroth-Order Proximal Gradient Algorithms
    Gu, Bin
    Wei, Xiyuan
    Zhang, Hualin
    Chang, Yi
    Huang, Heng
    NEURAL COMPUTATION, 2024, 36 (05) : 897 - 935
  • [46] Quantized Zeroth-Order Gradient Tracking Algorithm for Distributed Nonconvex Optimization Under Polyak-Lojasiewicz Condition
    Xu, Lei
    Yi, Xinlei
    Deng, Chao
    Shi, Yang
    Chai, Tianyou
    Yang, Tao
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (10) : 5746 - 5758
  • [47] Highly Smooth Zeroth-Order Methods for Solving Optimization Problems under the PL Condition
    Gasnikov, A. V.
    Lobanov, A. V.
    Stonyakin, F. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (04) : 739 - 770
  • [48] Black-Box Reductions for Zeroth-Order Gradient Algorithms to Achieve Lower Query Complexity
    Gu, Bin
    Wei, Xiyuan
    Gao, Shangqian
    Xiong, Ziran
    Deng, Cheng
    Huang, Heng
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [49] Black-box reductions for zeroth-order gradient algorithms to achieve lower query complexity
    Gu, Bin
    Wei, Xiyuan
    Gao, Shangqian
    Xiong, Ziran
    Deng, Cheng
    Huang, Heng
    Journal of Machine Learning Research, 2021, 22
  • [50] Remarkable zeroth-order resonant transmission of microwaves through a single subwavelength metal slit
    Suckling, JR
    Sambles, JR
    Lawrence, CR
    PHYSICAL REVIEW LETTERS, 2005, 95 (18)