Zeroth-order single-loop algorithms for nonconvex-linear minimax problems

被引:0
|
作者
Jingjing Shen
Ziqi Wang
Zi Xu
机构
[1] Shanghai University,Department of Mathematics
来源
关键词
Nonconvex-linear minimax problem; Zeroth-order algorithm; Alternating randomized gradient projection algorithm; Alternating randomized proximal gradient algorithm; Complexity analysis; Machine learning; 90C47; 90C26; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
Nonconvex minimax problems have attracted significant interest in machine learning and many other fields in recent years. In this paper, we propose a new zeroth-order alternating randomized gradient projection algorithm to solve smooth nonconvex-linear problems and its iteration complexity to find an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-first-order Nash equilibrium is Oε-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( \varepsilon ^{-3} \right) $$\end{document} and the number of function value estimation per iteration is bounded by Odxε-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( d_{x}\varepsilon ^{-2} \right) $$\end{document}. Furthermore, we propose a zeroth-order alternating randomized proximal gradient algorithm for block-wise nonsmooth nonconvex-linear minimax problems and its corresponding iteration complexity is OK32ε-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( K^{\frac{3}{2}} \varepsilon ^{-3} \right) $$\end{document} and the number of function value estimation is bounded by Odxε-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( d_{x}\varepsilon ^{-2} \right) $$\end{document} per iteration. The numerical results indicate the efficiency of the proposed algorithms.
引用
收藏
页码:551 / 580
页数:29
相关论文
共 50 条