Zeroth-order single-loop algorithms for nonconvex-linear minimax problems

被引:0
|
作者
Jingjing Shen
Ziqi Wang
Zi Xu
机构
[1] Shanghai University,Department of Mathematics
来源
关键词
Nonconvex-linear minimax problem; Zeroth-order algorithm; Alternating randomized gradient projection algorithm; Alternating randomized proximal gradient algorithm; Complexity analysis; Machine learning; 90C47; 90C26; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
Nonconvex minimax problems have attracted significant interest in machine learning and many other fields in recent years. In this paper, we propose a new zeroth-order alternating randomized gradient projection algorithm to solve smooth nonconvex-linear problems and its iteration complexity to find an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-first-order Nash equilibrium is Oε-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( \varepsilon ^{-3} \right) $$\end{document} and the number of function value estimation per iteration is bounded by Odxε-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( d_{x}\varepsilon ^{-2} \right) $$\end{document}. Furthermore, we propose a zeroth-order alternating randomized proximal gradient algorithm for block-wise nonsmooth nonconvex-linear minimax problems and its corresponding iteration complexity is OK32ε-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( K^{\frac{3}{2}} \varepsilon ^{-3} \right) $$\end{document} and the number of function value estimation is bounded by Odxε-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\left( d_{x}\varepsilon ^{-2} \right) $$\end{document} per iteration. The numerical results indicate the efficiency of the proposed algorithms.
引用
收藏
页码:551 / 580
页数:29
相关论文
共 50 条
  • [1] Zeroth-order single-loop algorithms for nonconvex-linear minimax problems
    Shen, Jingjing
    Wang, Ziqi
    Xu, Zi
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) : 551 - 580
  • [2] Zeroth-order single-loop algorithms for nonconvex-linear minimax problems
    Shen, Jingjing
    Wang, Ziqi
    Xu, Zi
    JOURNAL OF GLOBAL OPTIMIZATION, 2022,
  • [3] Zeroth-order algorithms for nonconvex-strongly-concave minimax problems with improved complexities
    Wang, Zhongruo
    Balasubramanian, Krishnakumar
    Ma, Shiqian
    Razaviyayn, Meisam
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) : 709 - 740
  • [4] Zeroth-order algorithms for nonconvex–strongly-concave minimax problems with improved complexities
    Zhongruo Wang
    Krishnakumar Balasubramanian
    Shiqian Ma
    Meisam Razaviyayn
    Journal of Global Optimization, 2023, 87 : 709 - 740
  • [5] Zeroth-Order Alternating Gradient Descent Ascent Algorithms for A Class of Nonconvex-Nonconcave Minimax Problems
    Xu, Zi
    Wang, Zi-Qi
    Wang, Jun-Lin
    Dai, Yu-Hong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [6] Zeroth-order algorithms for stochastic distributed nonconvex optimization
    Yi, Xinlei
    Zhang, Shengjun
    Yang, Tao
    Johansson, Karl H.
    AUTOMATICA, 2022, 142
  • [7] Hybrid Variance-Reduced SGD Algorithms For Minimax Problems with Nonconvex-Linear Function
    Tran-Dinh, Quoc
    Liu, Deyi
    Nguyen, Lam M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [8] A Proximal Zeroth-Order Algorithm for Nonconvex Nonsmooth Problems
    Kazemi, Ehsan
    Wang, Liqiang
    2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 64 - 71
  • [9] An approximation proximal gradient algorithm for nonconvex-linear minimax problems with nonconvex nonsmooth terms
    He, Jiefei
    Zhang, Huiling
    Xu, Zi
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 90 (01) : 73 - 92
  • [10] Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization
    Ji, Kaiyi
    Wang, Zhe
    Zhou, Yi
    Liang, Yingbin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97