A Review of the Sixth Painlevé Equation

被引:0
|
作者
Davide Guzzetti
机构
[1] SISSA,
[2] Intenational School of Advanced Studies,undefined
来源
关键词
Painlevé equations; Isomonodromy deformations; Asymptotic analysis; 34M55; 34M35; 34M40;
D O I
暂无
中图分类号
学科分类号
摘要
For the Painlevé VI transcendents, we provide a unitary description of the critical behaviours, the connection formulae, their complete tabulation, and the asymptotic distribution of poles close to a critical point.
引用
收藏
页码:495 / 527
页数:32
相关论文
共 50 条
  • [41] Some results of ϖ-Painlevé difference equation
    Yong Liu
    Yuqing Zhang
    Advances in Difference Equations, 2018
  • [42] Numerical solution of the Painlev, V equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (01) : 44 - 56
  • [43] Tronquée Solutions of the Painlevé Equation PI
    O. Costin
    R. D. Costin
    M. Huang
    Constructive Approximation, 2015, 41 : 467 - 494
  • [44] Local expansions of solutions to the fifth Painlevé equation
    A. D. Bruno
    A. V. Parusnikova
    Doklady Mathematics, 2011, 83 : 348 - 352
  • [45] Hard Loss of Stability in Painlevé-2 Equation
    O M Kiselev
    Journal of Nonlinear Mathematical Physics, 2001, 8 : 65 - 95
  • [46] An Ultradiscrete Matrix Version of the Fourth Painlevé Equation
    Chris M. Field
    Chris M. Ormerod
    Advances in Difference Equations, 2007
  • [47] Asymptotic forms of solutions to the fourth Painlevé equation
    A. D. Bruno
    I. V. Goryuchkina
    Doklady Mathematics, 2008, 78 : 868 - 873
  • [48] Painlevé analysis of the Sasa-Satsuma equation
    Kudryashov, Nikolay A.
    PHYSICS LETTERS A, 2024, 525
  • [49] Asymptotic forms of solutions to the third Painlevé equation
    A. D. Bruno
    I. V. Goryuchkina
    Doklady Mathematics, 2008, 78 : 765 - 768
  • [50] Asymptotics of Solutions of the Discrete Painlevé I Equation
    Aptekarev, A. I.
    Novokshenov, V. Yu.
    MATHEMATICAL NOTES, 2024, 116 (5-6) : 1170 - 1182