A Review of the Sixth Painlevé Equation

被引:0
|
作者
Davide Guzzetti
机构
[1] SISSA,
[2] Intenational School of Advanced Studies,undefined
来源
关键词
Painlevé equations; Isomonodromy deformations; Asymptotic analysis; 34M55; 34M35; 34M40;
D O I
暂无
中图分类号
学科分类号
摘要
For the Painlevé VI transcendents, we provide a unitary description of the critical behaviours, the connection formulae, their complete tabulation, and the asymptotic distribution of poles close to a critical point.
引用
收藏
页码:495 / 527
页数:32
相关论文
共 50 条
  • [21] Transformations RS42(3) of the Ranks ≤ 4¶and Algebraic Solutions of the Sixth Painlevé Equation
    F. V. Andreev
    A. V. Kitaev
    Communications in Mathematical Physics, 2002, 228 : 151 - 176
  • [22] Heuristic computational intelligence approach to solve nonlinear multiple singularity problem of sixth Painlev'e equation
    Ahmad, Iftikhar
    Rehman, Abdul
    Ahmad, Fayyaz
    Raja, Muhammad Asif Zahoor
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (01): : 101 - 115
  • [23] Heuristic computational intelligence approach to solve nonlinear multiple singularity problem of sixth Painlev́e equation
    Iftikhar Ahmad
    Abdul Rehman
    Fayyaz Ahmad
    Muhammad Asif Zahoor Raja
    Neural Computing and Applications, 2019, 31 : 101 - 115
  • [24] The Hermite–Krichever Ansatz for Fuchsian equations with applications to the sixth Painlevé equation and to finite-gap potentials
    Kouichi Takemura
    Mathematische Zeitschrift, 2009, 263
  • [25] On the Lax pairs of the continuous and discrete sixth Painlevé equations
    Runliang Lin
    Robert Conte
    Micheline Musette
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 2) : 107 - 118
  • [26] Dynamics of the Painlevé-Ince Equation
    Jaume Llibre
    Results in Mathematics, 2023, 78
  • [27] On the solution of a Painlevé III equation
    Widom H.
    Mathematical Physics, Analysis and Geometry, 2000, 3 (4) : 375 - 384
  • [28] Is my ODE a Painlevé equation in disguise?
    Hietarinta J.
    Dryuma V.
    Journal of Nonlinear Mathematical Physics, 2002, 9 (Suppl 1) : 67 - 74
  • [29] Painlevé integrability of the supersymmetric Ito equation
    岑锋杰
    赵燕丹
    房霜韵
    孟欢
    俞军
    Chinese Physics B, 2019, 28 (09) : 93 - 96
  • [30] Numerical solution of the Painlev, VI equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 180 - 193