Hyperbolic Group;
Index Subgroup;
Irreducible Lattice;
Nonzero Projection;
Index Inclusion;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that if Γ=Γ1×⋯×Γn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma = \Gamma_1\times\dotsb\times \Gamma_n}$$\end{document} is a product of n≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm n} \geq 2}$$\end{document} non-elementary ICC hyperbolic groups then any discrete group Λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Lambda}$$\end{document} which is W∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${W^*}$$\end{document}-equivalent to Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma}$$\end{document} decomposes as a direct product of n ICC groups and does not decompose as a direct product of k ICC groups when n≠k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm n} \not= {\rm k}}$$\end{document}. This gives a group-level strengthening of Ozawa and Popa’s unique prime decomposition theorem by removing all assumptions on the group Λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Lambda}$$\end{document}. This result in combination with Margulis’ normal subgroup theorem allows us to give examples of lattices in the same Lie group which do not generate stably equivalent II1 factors.
机构:
Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba Meguro Ku, Tokyo 1540022, JapanUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba Meguro Ku, Tokyo 1540022, Japan