Hyperbolic Group;
Index Subgroup;
Irreducible Lattice;
Nonzero Projection;
Index Inclusion;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that if Γ=Γ1×⋯×Γn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma = \Gamma_1\times\dotsb\times \Gamma_n}$$\end{document} is a product of n≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm n} \geq 2}$$\end{document} non-elementary ICC hyperbolic groups then any discrete group Λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Lambda}$$\end{document} which is W∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${W^*}$$\end{document}-equivalent to Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma}$$\end{document} decomposes as a direct product of n ICC groups and does not decompose as a direct product of k ICC groups when n≠k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm n} \not= {\rm k}}$$\end{document}. This gives a group-level strengthening of Ozawa and Popa’s unique prime decomposition theorem by removing all assumptions on the group Λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Lambda}$$\end{document}. This result in combination with Margulis’ normal subgroup theorem allows us to give examples of lattices in the same Lie group which do not generate stably equivalent II1 factors.
机构:
Univ Iowa, Dept Math, 14 MacLean Hall, Iowa City, IA 52242 USAUniv Iowa, Dept Math, 14 MacLean Hall, Iowa City, IA 52242 USA
Chifan, Ionut
Ioana, Adrian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
IMAR, Bucharest, RomaniaUniv Iowa, Dept Math, 14 MacLean Hall, Iowa City, IA 52242 USA
机构:
Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, JapanNagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
机构:
Siena Coll, Dept Math, 515 Loudon Rd, Loudonville, NY 12211 USASiena Coll, Dept Math, 515 Loudon Rd, Loudonville, NY 12211 USA
Bannon, Jon P.
Cameron, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Vassar Coll, Dept Math & Stat, Poughkeepsie, NY 12604 USASiena Coll, Dept Math, 515 Loudon Rd, Loudonville, NY 12211 USA
Cameron, Jan
Chifan, Ionut
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Math, Iowa City, IA 52242 USA
Indian Inst Technol Madras, Chennai 600036, IndiaSiena Coll, Dept Math, 515 Loudon Rd, Loudonville, NY 12211 USA
Chifan, Ionut
Mukherjee, Kunal
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USASiena Coll, Dept Math, 515 Loudon Rd, Loudonville, NY 12211 USA
Mukherjee, Kunal
Smith, Roger
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Math & Stat, Dearborn, MI 48281 USASiena Coll, Dept Math, 515 Loudon Rd, Loudonville, NY 12211 USA
Smith, Roger
Wiggins, Alan
论文数: 0引用数: 0
h-index: 0
机构:
Vassar Coll, Dept Math & Stat, Poughkeepsie, NY 12604 USASiena Coll, Dept Math, 515 Loudon Rd, Loudonville, NY 12211 USA