Instability for the Semiclassical Non-linear Schrödinger Equation

被引:0
|
作者
Nicolas Burq
Maciej Zworski
机构
[1] Université Paris Sud,Mathematics Department
[2] Mathématiques,undefined
[3] Institut Universitaive de France,undefined
[4] University of California,undefined
来源
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Sobolev Space;
D O I
暂无
中图分类号
学科分类号
摘要
We adapt recent results on instability for non-linear Schrödinger equations to the semi-classical setting. Rather than work with Sobolev spaces we estimate projective instability in terms of the small constant, h, appearing in the equation. Our motivation comes from the Gross-Pitaevski equation used in the study of Bose-Einstein condensation.
引用
收藏
页码:45 / 58
页数:13
相关论文
共 50 条
  • [31] A Semiclassical Approach to the Nonlocal Nonlinear Schrödinger Equation with a Non-Hermitian Term
    Kulagin, Anton E.
    Shapovalov, Alexander V.
    MATHEMATICS, 2024, 12 (04)
  • [32] Numerical Simulation of a Non-linear Singular Perturbed Schrödinger Equation Using Finite Element Approximation
    Manoj Kumar
    Akanksha Srivastava
    Garima Mishra
    National Academy Science Letters, 2013, 36 : 239 - 252
  • [33] The Schrödinger Equation in the Mean-Field and Semiclassical Regime
    François Golse
    Thierry Paul
    Archive for Rational Mechanics and Analysis, 2017, 223 : 57 - 94
  • [34] Painlevé Analysis and Singular Manifold Method for a (2 + 1) Dimensional Non-Linear Schrödinger Equation
    P G Estévez
    G A Hernaez
    Journal of Nonlinear Mathematical Physics, 2001, 8 : 106 - 111
  • [35] New chirp-free and chirped form optical solitons to the non-linear Schrödinger equation
    Asim Zafar
    M. Raheel
    Hadi Rezazadeh
    Mustafa Inc
    Mehmet Ali Akinlar
    Optical and Quantum Electronics, 2021, 53
  • [36] Global well-posedness for the higher order non-linear Schrödinger equation in modulation spaces
    Carvajal, X.
    Gamboa, P.
    Santos, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [37] Exponential Relaxation to Equilibrium for a One-Dimensional Focusing Non-Linear Schrödinger Equation with Noise
    Eric A. Carlen
    Jürg Fröhlich
    Joel Lebowitz
    Communications in Mathematical Physics, 2016, 342 : 303 - 332
  • [38] Semiclassical states for the nonlinear Schrödinger equation with the electromagnetic field
    Teresa D’aprile
    Nonlinear Differential Equations and Applications NoDEA, 2007, 13 : 655 - 681
  • [39] Concentration behaviors of nodal solutions for a semiclassical Schrödinger equation
    Liu, Jiaquan
    Wang, Zhi-Qiang
    Zhao, Fukun
    JOURNAL D ANALYSE MATHEMATIQUE, 2025,
  • [40] Nonautonomous and non periodic Schrödinger equation with indefinite linear part
    L. A. Maia
    J. C. Oliveira Junior
    R. Ruviaro
    Journal of Fixed Point Theory and Applications, 2017, 19 : 17 - 36