Factorization using binary decision diagrams

被引:0
|
作者
Håvard Raddum
Srimathi Varadharajan
机构
[1] Simula@UiB,
来源
关键词
Binary decision diagrams; Integer factorization; RSA; 11-XX; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
We address the factorization problem in this paper: Given an integer N=pq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N=pq$\end{document}, find two factors p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} such that p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} are of same bit-size. When we say integer multiplication of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}, we mean expressing N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} as a product of two factors p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} such that p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} are of same bit-size. We work on this problem in the light of Binary Decision Diagrams (BDD). A Binary Decision Diagram is an acyclic graph which can be used to represent Boolean functions. We represent integer multiplication of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} as product of factors p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} using a BDD. Using various operations on the BDD we present an algorithm for factoring N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}. All calculations are done over GF(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$GF(2)$\end{document}. We show that the number of nodes in the constructed BDD is O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(n^{3})$\end{document} where n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document} is the number of bits in p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} or q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document}. We do factoring experiments for the case when p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} are primes as in the case of RSA modulus N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}, and report on the observed complexity. The multiplication of large RSA numbers (that cannot be factored fast in practice) can still be easily represented as a BDD.
引用
收藏
页码:443 / 460
页数:17
相关论文
共 50 条
  • [1] Factorization using binary decision diagrams
    Raddum, Havard
    Varadharajan, Srimathi
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (03): : 443 - 460
  • [2] BOOLEAN DIVISION AND FACTORIZATION USING BINARY DECISION DIAGRAMS
    STANION, T
    SECHEN, C
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1994, 13 (09) : 1179 - 1184
  • [3] Representing the Integer Factorization Problem Using Ordered Binary Decision Diagrams
    Brown, David E.
    Skidmore, David
    THEORY OF COMPUTING SYSTEMS, 2023, 67 (06) : 1307 - 1332
  • [4] Representing the Integer Factorization Problem Using Ordered Binary Decision Diagrams
    David E. Brown
    David Skidmore
    Theory of Computing Systems, 2023, 67 : 1307 - 1332
  • [5] Outlier detection using binary decision diagrams
    Kutsuna, Takuro
    Yamamoto, Akihiro
    DATA MINING AND KNOWLEDGE DISCOVERY, 2017, 31 (02) : 548 - 572
  • [6] Terminal reliability using binary decision diagrams
    Singh, H
    Vaithilingam, S
    Anne, RK
    Anneberg, L
    MICROELECTRONICS AND RELIABILITY, 1996, 36 (03): : 363 - 365
  • [7] Outlier detection using binary decision diagrams
    Takuro Kutsuna
    Akihiro Yamamoto
    Data Mining and Knowledge Discovery, 2017, 31 : 548 - 572
  • [8] Bayesian analysis using binary decision diagrams
    Andrews, J. D.
    Ansell, J.
    Ma, P.
    Phillips, M.
    SAFETY AND RELIABILITY FOR MANAGING RISK, VOLS 1-3, 2006, : 855 - +
  • [9] Functional simulation using Binary Decision Diagrams
    Scholl, C
    Drechsler, R
    Becker, B
    1997 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN - DIGEST OF TECHNICAL PAPERS, 1997, : 8 - 12
  • [10] Algebraic Attacks Using Binary Decision Diagrams
    Raddum, Havard
    Kazymyrov, Oleksandr
    CRYPTOGRAPHY AND INFORMATION SECURITY IN THE BALKANS, 2015, 9024 : 40 - 54