Factorization using binary decision diagrams

被引:0
|
作者
Håvard Raddum
Srimathi Varadharajan
机构
[1] Simula@UiB,
来源
关键词
Binary decision diagrams; Integer factorization; RSA; 11-XX; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
We address the factorization problem in this paper: Given an integer N=pq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N=pq$\end{document}, find two factors p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} such that p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} are of same bit-size. When we say integer multiplication of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}, we mean expressing N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} as a product of two factors p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} such that p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} are of same bit-size. We work on this problem in the light of Binary Decision Diagrams (BDD). A Binary Decision Diagram is an acyclic graph which can be used to represent Boolean functions. We represent integer multiplication of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} as product of factors p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} using a BDD. Using various operations on the BDD we present an algorithm for factoring N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}. All calculations are done over GF(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$GF(2)$\end{document}. We show that the number of nodes in the constructed BDD is O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(n^{3})$\end{document} where n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document} is the number of bits in p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} or q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document}. We do factoring experiments for the case when p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document} and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} are primes as in the case of RSA modulus N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}, and report on the observed complexity. The multiplication of large RSA numbers (that cannot be factored fast in practice) can still be easily represented as a BDD.
引用
收藏
页码:443 / 460
页数:17
相关论文
共 50 条
  • [21] Evolving binary decision diagrams using implicit neutrality
    Downing, RM
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 2107 - 2113
  • [22] Reversible Circuit Synthesis Using Binary Decision Diagrams
    Podlaski, Krzysztof
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (MIXDES 2016), 2016, : 235 - 238
  • [23] Using Datalog with binary decision diagrams for program analysis
    Whaley, J. (jwhaley@cs.stanford.edu), Asian Association for Foundation of Software; Japan Society for Software Science and Technology; International Information Science Foundation, Japan; University of Tsukuba (Springer Verlag):
  • [24] Zero-suppressed Binary Decision Diagrams Automated Test Assmbly using Zero-suppressed Binary Decision Diagrams
    Fuchimoto K.
    Minato S.-I.
    Ueno M.
    Transactions of the Japanese Society for Artificial Intelligence, 2022, 37 (05)
  • [25] Partial binary decision diagrams
    Townsend, WJ
    Thornton, MA
    PROCEEDINGS OF THE THIRTY-FOURTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2002, : 422 - 425
  • [26] Equational binary decision diagrams
    Groote, JF
    van de Poll, J
    LOGIC FOR PROGRAMMING AND AUTOMATED REASONING, PROCEEDINGS, 2000, 1955 : 161 - 178
  • [27] A CHARACTERIZATION OF BINARY DECISION DIAGRAMS
    CHAKRAVARTY, S
    IEEE TRANSACTIONS ON COMPUTERS, 1993, 42 (02) : 129 - 137
  • [28] Timed binary decision diagrams
    Li, ZC
    Zhao, YH
    Min, YH
    Brayton, RK
    INTERNATIONAL CONFERENCE ON COMPUTER DESIGN - VLSI IN COMPUTERS AND PROCESSORS, PROCEEDINGS, 1997, : 352 - 357
  • [29] Compressing Binary Decision Diagrams
    Hansen, Esben Rune
    Rao, S. Srinivasa
    Tiedemann, Peter
    ECAI 2008, PROCEEDINGS, 2008, 178 : 799 - +
  • [30] A fault tree analysis strategy using binary decision diagrams
    Reay, KA
    Andrews, JD
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2002, 78 (01) : 45 - 56